

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE TECNOLOGIA E RECURSOS NATURAIS PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL

Sabrina Holanda Oliveira

APRIMORANDO A ESTIMATIVA GLOBAL DA INTERCEPTAÇÃO DA PRECIPITAÇÃO POR MEIO DA MODELAGEM DA ESTRUTURA VEGETAL

Campina Grande, PB 2023 Sabrina Holanda Oliveira

Aprimorando a estimativa global da interceptação da precipitação por meio da modelagem da estrutura vegetal

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil e Ambiental, da Universidade Federal de Campina Grande, como requisito para a obtenção do título de Mestre em Engenharia Civil e Ambiental.

Orientador: Prof. Dr. John Elton de Brito Leite Cunha Orientadora: Profa. Dra. Fernanda Maria dos Reis Torroaes Valente

Campina Grande, PB 2023

O48a

Oliveira, Sabrina Holanda.

Aprimorando a estimativa global da interceptação da precipitação por meio da modelagem da estrutura vegetal / Sabrina Holanda Oliveira. - Campina Grande, 2023.

124 f. : color.

Dissertação (Mestrado em Engenharia Civil e Ambiental) -Universidade Federal de Campina Grande, Centro de Tecnologia e Recursos Naturais, 2023.

"Orientação: Prof. Dr. John Elton de Brito Leite Cunha, Profa. Dra. Fernanda Maria dos Reis Torroaes Valente."

Referências.

1. Recursos Hídricos e Terrestres. 2. Modelo Analítico de Gash. 3. Interceptação de Chuvas em Ambientes Florestais. 4. Hidrologia Florestal. 5. Balanço Hídrico de Áreas Florestais. 6. Modelo de Interceptação Global (GIM). I. Cunha, John Elton de Brito Leite. II. Valente, Fernanda Maria dos Reis Torroaes. III. Título.

CDU 556.18(043) FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA ITAPUANA SOARES DIAS GONÇALVES CRB-15/093

Sabrina Holanda Oliveira

Aprimorando a estimativa global da interceptação da precipitação por meio da modelagem da estrutura vegetal

Dissertação apresentada ao programa de Pós-Graduação em Engenharia Civil e Ambiental, da Universidade Federal de Campina Grande, como requisito para a obtenção do título de Mestre em Engenharia Civil e Ambiental.

Campina Grande, 16 de agosto de 2023.

Prof. Dr. John Elton de Brito Leite Cunha Universidade Federal de Campina Grande Orientador

Profa. Dra. Fernanda Maria dos Reis Torroaes Valente Universidade de Lisboa Orientadora

> Profa. Dra. Iana Alexandra Alves Rufino Universidade Federal de Campina Grande Examinador Interno

Prof. Dr. Rodolfo Luiz Bezerra Nóbrega Universidade de Bristol Examinador Externo

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE POS-GRADUACAO ENGENHARIA CIVIL AMBIENTAL Rua Aprigio Veloso, 882, - Bairro Universitario, Campina Grande/PB, CEP 58429-900

REGISTRO DE PRESENÇA E ASSINATURAS

1. ATA DA DEFESA PARA CONCESSÃO DO GRAU DE MESTRE EM ENGENHARIA CIVIL E AMBIENTAL

2. ALUNO(A): SABRINA HOLANDA OLIVEIRA / COMISSÃO EXAMINADORA: DR. JOHN ELTON DE BRITO LEITE CUNHA - PPGECA/UFCG (PRESIDENTE) - ORIENTADOR, DR.ª FERNANDA MARIA DOS REIS TORROAES VALENTE – UNIVERSIDADE DE LISBOA – COORIENTADORA, DR.ª IANA ALEXANDRA ALVES RUFINO PPGECA/UFCG – EXAMINADORA INTERNA, DR. RODOLFO LUIZ BEZERRA NÓBREGA – UNIVERSIDADE DE BRISTOL – EXAMINADOR EXTERNO (PORTARIA 23/2023). / TITULO DA DISSERTAÇÃO: "APRIMORANDO A ESTIMATIVA GLOBAL DA INTERCEPTAÇÃO DA PRECIPITAÇÃO POR MEIO DA MODELAGEM DA ESTRUTURA VEGETAL" / ÁREA DE CONCENTRAÇÃO: RECURSOS HÍDRICOS E SANEAMENTO AMBIENTAL / HORA DE INICIO: 10:00 HORAS / FORMA DA SESSÃO: POR VÍDEOCONFERÊNCIA.

EM SESSÃO REALIZADA POR VÍDEOCONFERÊNCIA, APÓS EXPOSIÇÃO DE CERCA DE 40 3. MINUTOS, O(A) CANDIDATO(A) FOI ARGUIDO(A) ORALMENTE PELOS MEMBROS DA COMISSÃO EXAMINADORA, TENDO DEMONSTRADO SUFICIÊNCIA DE CONHECIMENTO E CAPACIDADE DE SISTEMATIZAÇÃO NO TEMA DE SUA DISSERTAÇÃO, SENDO-LHE ATRIBUÍDA O CONCEITO "EM EXIGÊNCIA", SENDO QUE A POSSIBILIDADE DE APROVAÇÃO ESTÁ CONDICIONADA À AVALIAÇÃO DA NOVA VERSÃO DO TRABALHO FINAL, SEGUINDO PROCEDIMENTOS PREVISTOS NA RESOLUÇÃO DO PROGRAMA. O PRESIDENTE DA COMISSÃO EXAMINADORA, OUVIDOS OS DEMAIS MEMBROS, DEVERÁ FICAR RESPONSÁVEL POR ATESTAR QUE AS CORREÇÕES SOLICITADAS NA LISTA DE EXIGÊNCIAS FORAM ATENDIDAS NA VERSÃO FINAL DO TRABALHO. A COMISSÃO EXAMINADORA CUMPRINDO OS PRAZOS REGIMENTAIS, ESTABELECE UM PRAZO MÁXIMO DE 30 DIAS PARA QUE SEJAM FEITAS AS ALTERAÇÕES EXIGIDAS. APÓS O DEPÓSITO FINAL DO DOCUMENTO DE DISSERTAÇÃO, DEVIDAMENTE REVISADO E MEDIANTE ATESTADO DO ORIENTADOR, O CONCEITO "EM EXIGÊNCIA" PASSARÁ IMEDIATAMENTE PARA O DE "APROVADO". NA FORMA REGULAMENTAR, FOI LAVRADA A PRESENTE ATA, QUE É ASSINADA POR MIM, FLÁVIO PEREIRA DA CUNHA, SECRETÁRIO, ALUNA E OS MEMBROS DA COMISSÃO **EXAMINADORA PRESENTES.**

4.	CAMPINA GRANDE, 16 DE AGOSTO DE 2023
5.	Assinado por: Fernanda Maria dos Reis Torroaes
6.	Valente Num. de Identificação: 06006143 Data: 2013 08 31 16:12:28+01'00'
7.	Data. 2023.00.31 10.12.2010100
8.	<u> </u>
9.	FERNANDA MARIA DOS REIS TORROAES VALENTE – COORIENTADORA
10.	
11.	
12.	

13.

14.

- ODOLFO UIZ KEZERRA MOBREGA
- RODOLFO LUIŻ BEZERRA NÓBREGA EXAMINADOR EXTERNO

Documento assinado eletronicamente por **Sabrina Holanda Oliveira**, **Usuário Externo**, em 17/08/2023, às 16:06, conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da <u>Portaria SEI nº 002, de 25 de outubro de 2018</u>.

SEI/UFCG - 3645138 - Ata de Defesa

Documento assinado eletronicamente por **JOHN ELTON DE BRITO LEITE CUNHA**, **PROFESSOR(A) DO MAGISTERIO SUPERIOR**, em 17/08/2023, às 16:11, conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da <u>Portaria SEI nº 002, de 25 de outubro de 2018</u>.

Documento assinado eletronicamente por **FLAVIO PEREIRA DA CUNHA**, **SECRETÁRIO (A)**, em 17/08/2023, às 16:19, conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por IANA ALEXANDRA ALVES RUFINO, PROFESSOR(A) DO MAGISTERIO SUPERIOR, em 18/08/2023, às 08:08, conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

A autenticidade deste documento pode ser conferida no site <u>https://sei.ufcg.edu.br/autenticidade</u>, informando o código verificador **3645138** e o código CRC **17FA8E8A**.

Referência: Processo nº 23096.057396/2023-45

SEI nº 3645138

Aos meus pais, que sempre me inspiram.

AGRADECIMENTOS

O mestrado foi um desafio como nunca experimentei, no qual fui constantemente desafiada a sair da minha zona de conforto. E é exatamente por isso que é tão importante expressar minha profunda gratidão às pessoas que me apoiaram e encorajaram ao longo desse período.

Agradeço de coração à minha mãe Sandra e ao meu pai Francisco, pois não há palavras que possam descrever o quanto sou grata pelo esforço que fizeram para me proporcionar uma educação de qualidade. Mesmo quando Mainha se recusava a fazer café à noite (para que eu conseguisse dormir melhor), ela sempre esteve ao meu lado com todo o seu amor e carinho e me arrastava para fazer exercícios. À minha irmã Samea, sou grata por sempre me mimar e estar presente em cada etapa da minha vida.

Meus sinceros agradecimentos a John Cunha e Fernanda Valente, meus orientadores, que desempenharam seus papéis de forma exemplar e estiveram sempre ao meu lado durante esta jornada do mestrado, com uma solicitude ímpar. John, com sua habilidade de planejar cada etapa e Fernanda, verdadeiramente um anjo, cujas valiosas contribuições foram fundamentais para que este trabalho alcançasse seu potencial máximo.

Não posso deixar de agradecer a Ulisses Bezerra, meu "cumpade" de pesquisa, que sempre esteve disposto a esclarecer minhas dúvidas e compartilhar seu conhecimento. Também sou grata aos meus colegas de turma, sem os quais esse mestrado não teria sido a mesma experiência.

Por fim, minha gratidão se estende aos meus amigos e a todos que, direta ou indiretamente, me apoiaram e contribuíram para o meu crescimento acadêmico e pessoal.

[&]quot;Tenho a impressão de ter sido uma criança brincando à beira-mar, divertindo-me em descobrir uma pedrinha mais lisa ou uma concha mais bonita que as outras, enquanto o imenso oceano da verdade continua misterioso diante de meus olhos." (Isaac Newton)

RESUMO

Estimativas precisas de perda de interceptação de chuva são cruciais para modelar o balanço hídrico de áreas florestais. No entanto, existe uma variabilidade regional considerável no processo de interceptação e muita incerteza permanece. Este estudo aprimora a estimativa da perda de interceptação de chuva em escala global, integrando produtos de sensoriamento remoto na parametrização do modelo analítico de Gash. Essa configuração aprimorada é chamada de Modelo de interceptação global (GIM). Imagens de satélite de alta resolução foram usadas para obter índices de vegetação e refletância espectral, que foram então empregados em modelos de regressão linear para estimar a fração de cobertura do dossel (c) e a capacidade de armazenamento de água da vegetação (S_v) . A sua importância nos processos ecológicos e na gestão dos recursos hídricos e terrestres torna a modelagem destes parâmetros de particular interesse. Os outros dois parâmetros necessários para executar o modelo Gash, as taxas médias de precipitação e de evaporação sob condições de dossel saturado, foram obtidos através da integração dos produtos meteorológicos MWSEP e ERA5-Land. O desempenho da modelagem foi avaliado usando medições in situ e conjuntos de dados em grade. As estimativas do GIM exibiram uma estatística de desempenho superior quando comparadas ao PMLv2 e GLEAMv3.7a. Nossos resultados demonstram o alto potencial desta abordagem para melhorar a precisão das estimativas de perda de interceptação de chuva de escalas locais a globais.

Palavras-chave: Modelo analítico de Gash; Interceptação de chuvas em ambientes florestais; Hidrologia florestal.

ABSTRACT

Accurate estimates of rainfall interception loss are crucial for modeling the water balance of forested areas. However, considerable regional variability exists in the interception process, and much uncertainty remains. This study enhances the estimation of rainfall interception loss at the global scale by integrating remote sensing products into the parameterization of Gash's analytical model. This enhanced configuration is referred to as as the Global Interception Model (GIM). High-resolution satellite imagery was used to derive vegetation indices and spectral reflectance, which were then employed in linear regression models to estimate canopy cover fraction (c) and vegetation water storage capacity (S_v) . Their importance in ecological processes, and land and water resource management, makes the modeling of these parameters of particular interest. The other two parameters required to run the Gash model, namely the mean rainfall and evaporation rates under saturated canopy conditions, were obtained via the integration of MWSEP and ERA5-Land meteorological products. Modeling performance was evaluated using in situ measurements and gridded datasets. GIM estimates exhibited a superior performance statistic when compared to PMLv2 and GLEAMv3.7a. Our results demonstrate the high potential of this approach for improving the accuracy of rainfall interception loss estimates from local to global scales.

Keywords: Gash's analytical model; Forest rainfall interception; Forest hydrology.

LISTA DE FIGURAS

Figura 1 - Ilustração simplificada do processo de interceptação19
Figura 2 – Fluxograma da metodologia34
Figura 3 - Distribuição geográfica dos locais de estudo e tipos de cobertura vegetal47
Figura 4 – Distribuição dos valores de c e S_v por tipo de vegetação
Figura 5 – Comparação entre c observado e estimado a partir de (a) modelo de Gutman e Ignatov
(1997); (b) modelo de Zhong et al. (2022); e (c) os modelos de regressão linear propostos para
os valores anuais
Figura 6 – Comparação entre c observado e estimado a partir de (a) modelo de van Dijk e
Bruijnzeel (2001a); (b) modelo de Gutman e Ignatov (1997); (c) modelo de Zhong et al. (2022);
e (d) modelos de regressão linear propostos para os valores médios do período de estudo54
Figura 7 – Comparação entre S_v observada e estimada usando (a) modelo vD-B com MODIS
LAI, (b) modelo vD-B com LAI medido em campo e (c) os modelos de regressão linear
propostos
Figura 8 – Comparação entre S_v observado e estimado a partir dos modelos preexistentes e os
modelos de regressão linear propostos para os valores médios do período de estudo57
Figura 9 - Comparação da perda de interceptação estimada e observada usando dados (a, b)
GIM, (c, d) PMLv2 e (e, f) GLEAM v3.7a60
Figura 10 - Comparação da precipitação total observada e estimada (a, c, e) e perda de
interceptação (b, d, f) usando três conjuntos de dados de precipitação diferentes

LISTA DE TABELAS

Tabela 1 - Descrição de produtos climatológicos de sensoriamento remoto com alta	resolução
temporal	26
Tabela 2 – Equações do modelo de Gash e suas versões revisadas	
Tabela 3 – Equações dos índices espectrais utilizados	
Tabela 4 – Equações relacionadas à c e Sv	
Tabela 5 – Métricas utilizadas para avaliar os modelos	40
Tabela 6 – Variáveis do ERA5-Land utilizadas	41
Tabela 7 – Resumo dos produtos de sensoriamento remotos utilizados	44
Tabela 8 – Número de áreas experimentais por tipo de vegetação e por classe	47
Tabela 9 – Modelos de regressão linear para <i>c</i> por tipo de vegetação	49
Tabela 10 – Modelos de regressão linear para S_{ν} por tipo de vegetação	51
Tabela 11 – Análise de <i>bootstrap</i>	

LISTA DE SÍMBOLOS, ABREVIATURAS E SIGLAS

- Blue Refletância de superfície da banda Azul do Landsat
- *c* Fração de cobertura do dossel
- c_p Calor específico do ar
- $C_1 \in C_2$ Coeficientes da resistência do aerossol
- Classe A Áreas experimentais georreferenciadas com alta precisão em arco-segundo
- Classe B Áreas experimentais georreferenciadas em arco-minuto em vegetações homogêneas
- Classe C Áreas experimentais georreferenciadas em arco-minuto em vegetações heterogêneas
- Classe D Áreas experimentais com baixa proporção de vegetação em relação ao tamanho do
- pixel ou com localização imprecisa (amplitude de coordenadas)
- Classe E Áreas experimentais sem imagens de satélite disponíveis
- *d* Altura de deslocamento do plano zero de referência
- \bar{E} Taxa média de evaporação
- E_a Pressão de vapor real
- \bar{E}_c Taxa média de evaporação ajustada para a área de solo
- *es* Pressão de vapor saturado
- EVI Índice de Vegetação Aprimorado
- EVI2 Índice de Vegetação Aprimorado (versão 2)
- fPAR Fração de radiação fotossinteticamente ativa absorvida
- JAXA Agência Japonesa de Exploração Aeroespacial
- *G* Fluxo de calor sensível para o solo
- GIM Global Interception Model
- GLDAS Global Land Data Assimilation System
- GLEAM Global Land Evaporation Amsterdam Model
- Green Refletância de superfície da banda Verde do Landsat
- *I* Perda por interceptação
- *I*_A Evaporação após findar a chuva
- IAF Índice de Área Foliar
- *I*_C Perda por interceptação durante *m* eventos
- IMERG Integrated Multi-satellitE Retrievals for Global Precipitation Measurement
- *Is* Evaporação durante fase de saturação
- *I_T* Evaporação da água retida pelos troncos

- *I*_W Perda por interceptação durante fase de umedecimento
- *h* Altura da vegetação
- k Constante de von Kármán
- k_1 Proporção da superfície evaporativa em relação a área projetada das folhas
- $L_1 e L_2$ Coeficientes de ajuste do solo
- NDVI Índice de Vegetação por Diferença Normalizada
- NDWI Índice de Água por Diferença Normalizada
- *m* chuvas Número de chuvas que não conseguem saturar o dossel
- max Valor máximo da série temporal
- *md* Valor mediano da série temporal
- *min* Valor mínimo da série temporal
- *mn* Valor médio da série temporal

MNDWI Índice de Água por Diferença Normalizada Modificado

MODIS Moderate Resolution Imaging Spectroradiometer

MSWEP Multi-Source Weighted-Ensemble Precipitation

MQO Mínimos Quadrados Ordinários

N Número de observações

NASA Administração Nacional da Aeronáutica e Espaço

n chuvas Número de chuvas com intensidade suficiente para saturar o dossel

- NIR Refletância de superfície da banda Infravermelho próximo do Landsat
- *NSE* Coeficiente de eficiência de Nash-Sutcliffe
- *p* Coeficiente de precipitação livre
- P Pressão atmosférica
- P25 Valor correspondente ao percentil 25 da série temporal
- P75 Valor correspondente ao percentil 75 da série temporal
- *P_g* Precipitação bruta
- P_{g} ' Quantidade de precipitação bruta para saturar o dossel
- PMLv2 Penman-Monteith-Leuning Evapotranspiration V2
- *pt* Proporção da chuva desviada para o escoamento pelo tronco

QA Pixel Atributos de qualidade de pixel gerados a partir do algoritmo CFMASK para o Landsat

- *r* Coeficiente de correlação absoluto ou Coeficiente de correlação de Pearson
- \bar{R} Taxa média de precipitação

r_a	Resistência aerodinâmica ar								
rs	Resistência do dossel								
Red	Refletância de superfície da banda Vermelha do Landsat								
RMSE	Raiz do erro quadrático médio								
R_n	Densidade de fluxo de radiação líquida								
R_{nl}	Radiação termal líquida								
R_{ns}	Radiação solar líquida								
R^2	Coeficiente de determinação								
R^2 adj	Coeficiente de determinação ajustado								
S	Capacidade de armazenamento de água do dossel								
SA	Albedo de superfície								
SAVI	Índice de Vegetação Ajustado ao Solo								
S_c	Capacidade de armazenamento de água do dossel referenciada à área de cobertura								
S_{f}	Escoamento pelos galhos e troncos								
S_t	Capacidade de armazenamento de água dos troncos								
S_{v}	Capacidade de armazenamento de água da vegetação								
SWIR1 e	<i>SWIR2</i> Refletância de superfície da banda Infravermelho de ondas curtas 1 e 2								
do Lands	sat, respectivamente								
t	Duração da precipitação								
T_a	Temperatura do ar								
T_{dew}	Temperatura do ponto de orvalho								
T_f	Chuva interna								
и	Velocidade do vento								
\overline{u}	Velocidade zonal do vento								
\bar{v}	Velocidade meridional do vento								
VCF	Vegetation Continuous Fields								
vD-mod	el Modelo proposto por van Dijk e Bruijnzeel (2001a) e revisado por Zhong et al.								
(2022)									
Z.	Altura de medição da velocidade do vento								
<i>Z</i> 0	Parâmetro de rugosidade da superfície que rege a transferência								
Δ	Inclinação da curva de pressão de vapor saturado com a temperatura								
γ	Constante psicrométrica								
λ	Calor latente de vaporização								

- κ Coeficiente de extinção da luz
- ρ_a Densidade do ar
- ρ_c Coeficiente de correlação de concordância
- σ Desvio padrão
- σ^2 Variância

SUMÁRIO

1	INTRODUÇÃO15
1.1	OBJETIVOS
2	FUNDAMENTAÇÃO TEÓRICA18
2.1	Visão geral do processo de interceptação18
2.2	Compreendendo a perda por interceptação: teoria, desafios e métodos de estimativa 20
2.3	Modelos de estimativa da perda por interceptação21
2.4	Desafios na utilização de dados de sensoriamento remoto para a estimativa da perda por
	interceptação
3	METODOLOGIA
3.1	Seleção de estudos em campo para estimativa da perda por interceptação31
3.2	Global Interception Model (GIM)
3.2.1	Estimativa dos parâmetros de vegetação35
3.2.2	Estimativa dos parâmetros climatológicos41
4	RESULTADOS E DISCUSSÃO
4.1	Caracterização da base de dados de estudos de campo46
4.2	Modelos de regressão linear
4.2.1	Modelos de regressão linear desenvolvidos49
4.2.2	Avaliação dos modelos de regressão linear propostos53
4.3	Avaliação do desempenho dos modelos globais de interceptação nas áreas de estudo 58
4.4	Limitações e desafios na estimativa da interceptação da precipitação utilizando dados de
	sensoriamento remoto
5	CONSIDERAÇÕES FINAIS
6	REFERÊNCIAS67
Apêr	ndice A – Descrição dos locais, perídos de estudo e vegetação
Apêr	ndice B – Dados climatológicos e de vegetação109

1 INTRODUÇÃO

A evaporação da chuva interceptada é um componente abiótico fundamental do balanço hidrológico, e a compreensão da perda por interceptação é essencial para a gestão dos recursos hídricos (RODRIGUES et al., 2021; SU et al., 2022a; WANG; WANG, 2019). Em áreas com cobertura vegetal, durante e após um evento de chuva, a precipitação incidente é particionada em precipitação, escoamento pelo tronco e perda por interceptação (*I*); sendo esta última a quantidade de precipitação bruta retida na superfície da vegetação e subsequentemente evaporada. Essa parte interceptada pode escoar pelos galhos e caules ou cair livremente para o solo ou evaporar para a atmosfera durante ou após a chuva, podendo não participar diretamente da formação do escoamento superficial ou do movimento das águas subterrâneas (HOLDER et al., 2020; JIANPING, 2020; MUZYLO et al., 2009; RIBEIRO FILHO, 2018). Estima-se que *I* represente aproximadamente 9% da quantidade total de água liberada da superfície terrestre para a atmosfera globalmente (LIAN; ZHAO; GENTINE, 2022). Sendo assim, a interceptação é um processo hidrológico relevante na infiltração, erosão, umidade do solo, escoamento e geração de vazão (SÁ; CHAFFE; OLIVEIRA, 2015).

I apresenta variação substancial entre diferentes eventos de precipitação e tipos de vegetação, pois está correlacionada às características da vegetação e condições climatológicas, tanto durante como após a chuva (HOLDER et al., 2020; IIDA et al., 2017; MA et al., 2019; RIBEIRO FILHO et al., 2019; VALENTE et al., 2020; WEI et al., 2020). Essa variabilidade temporal e espacial torna sua estimativa acurada em escalas regionais e globais um desafio significativo. Para Zheng e Jia (2020) quantificar a magnitude da interceptação da chuva em escala global é essencial para entender as interações solo-atmosfera, a dinâmica do ciclo da água global e os impactos do desmatamento. A estimativa global de *I* é fundamental para compreender o impacto da cobertura terrestre no clima e a disponibilidade de recursos hídricos em ampla escala (ZHONG et al., 2022). No entanto, medidas diretas de interceptação de chuvas estão restritas à escala local, o que dificulta a extrapolação à nível global (MA et al., 2019; PORADA; VAN STAN; KLEIDON, 2018; WEI et al., 2020).

Diante das dificuldades para a mensuração *in loco*, as abordagens existentes para estimar *I* a partir de sensoriamento remoto dependem de modelos baseados em processos físicos, como o modelo esparso de Gash. Sua simplicidade no entendimento conceitual e a falta de complexidade de programação tornam o modelo de Gash uma escolha robusta para estimar a interceptação pluviométrica e, portanto, é uma das abordagens mais utilizadas para estimar *I* (MUZYLO et al., 2009). No entanto, mesmo essa abordagem enfrenta desafios e restrições.

Em modelos baseadas em processos físicos para estimar *I*, dois parâmetros relacionados à estrutura da vegetação desempenham um papel essencial: capacidade de armazenamento da vegetação (S_v) e fração de cobertura do dossel (c). Representando a capacidade de armazenamento de água do dossel e dos troncos, S_v está relacionada com as características morfológicas da vegetação e com as condições climatológicas. Fatores como o tamanho e a orientação das folhas, ângulo dos ramos, variações fenológicas e sazonalidade do clima, tamanho de gotas, ângulo e direção da chuva, intensidade de precipitação e as condições prévias a um evento de chuva desempenham um papel significativo em sua determinação (LEVIA; FROST, 2003). Por sua vez, c, que representa a proporção da área coberta por vegetação, é influenciado pela densidade das árvores, área da copa e estágio de desenvolvimento da vegetação (BRYANT; BHAT; JACOBS, 2005; FATHIZADEH et al., 2017; LANDRY et al., 2018).

Incertezas nas estimativas de c e S_v acarretam erros nos modelos de interceptação de chuva. Análises de sensibilidade anteriores dos resultados do modelo analítico de Gash demonstraram o potencial de erros na estimativa da perda de interceptação devido às incertezas nos parâmetros da vegetação (LIMOUSIN et al., 2008; LINHOSS; SIEGERT, 2016; PEREIRA et al., 2016). Uma das abordagens utilizadas para estimar os parâmetros de vegetação, com ênfase na possibilidade do uso do sensoriamento remoto, envolve a aplicação de modelos empíricos que se baseiam em índices biofísicos como principais preditores (p. ex. GALDOS et al., 2012; GÓMEZ; GIRÁLDEZ; FERERES, 2001; MENZEL, 1996; VAN DIJK; BRUIJNZEEL, 2001a; VON HOYNINGEN-HUENE, 1981; WALLACE; MCJANNET, 2008; ZHONG et al., 2022).

Entre os índices usados, destaca-se a utilização do IAF como mais recorrente. As relações empíricas entre IAF e c ou S_v fornecem informações sobre a sazonalidade da vegetação no processo de interceptação e permitem a extrapolação de I para grandes áreas com o uso de dados de sensoriamento remoto. No entanto, a complexidade da vegetação influencia a precisão da estimativa do IAF. Além disso, nenhum IAF baseado em refletância espectral ou relações de índice espectral pode ser aplicado universalmente porque os coeficientes empíricos dependem principalmente do tipo de vegetação (Fang et al., 2019). Assim existe uma lacuna científica em relação à parametrização de I em diferentes tipos e condições de vegetação (Magliano et al., 2019), especialmente em alta resolução espacial e usando técnicas de sensoriamento remoto. Diante do exposto, este trabalho busca aprimorar a estimativa de I por meio da incorporação de refletâncias espectrais e índices biofísicos obtidos a partir de dados de sensoriamento remoto.

1.1 OBJETIVOS

O objetivo da pesquisa é aperfeiçoar a acurácia das estimativas de interceptação da precipitação (I) em escalas regional e global, por meio da implementação da versão esparsa do modelo Gash, incorporando modelos de regressão linear da fração de cobertura vegetal (c) e da capacidade de armazenamento da vegetação (S_v) elaborados por dados provenientes de sensoriamento remoto.

Para atender o objetivo principal, propõem-se os seguintes objetivos específicos:

- a) Desenvolver os modelos de regressão linear de c e S_v com base em refletâncias espectrais e índices biofísicos obtidos a partir de dados de sensoriamento remoto e compará-los com modelos preexistentes utilizando dados *in situ* de diferentes coberturas vegetais.
- b) Incorporar dados de sensoriamento remoto na parametrização do modelo esparso de Gash e comparar as estimativas obtidas por meio dessa abordagem com produtos globais de interceptação.

2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo apresenta o arcabouço teórico no qual se sustenta a dissertação, formado por sínteses da literatura sobre (1) processo de interceptação; e (2) teoria e métodos de estimativa; (3) modelos de estimativa da interceptação; além de uma seção dedicada aos (4) desafios relacionados a estimativa da interceptação por sensoriamento remoto.

2.1 VISÃO GERAL DO PROCESSO DE INTERCEPTAÇÃO

A interceptação é um processo hidrológico de grande relevância, uma vez que se refere à retenção temporária de água da chuva pela vegetação que não atinge diretamente o solo. Durante um evento chuvoso, as plantas interceptam uma parcela da chuva total (P_g), retendo-a como uma fina camada de água ou armazenando-a em pequenas depressões e sulcos na superfície de folhas, ramos e troncos (HORTON, 1919). Essa retenção divide o processo em três componentes: perda por interceptação, chuva interna e escoamento pelo tronco (MAGLIANO et al., 2019). A água retida durante a interceptação pode evaporar no decorrer ou logo após o término da chuva, sendo denominada como perda por interceptação (I). O restante da precipitação, quando a capacidade máxima de armazenamento da vegetação (S_v) é atingida, pode alcançar o solo por meio do gotejamento da copa ou precipitação direta (que não atinge a vegetação), também denominado de chuva interna (T_f), ou pelo escoamento nos galhos e troncos (S_f) (SÁ, 2019; SHI; BAO; LIANG, 2022). O processo hidrológico descrito no texto pode ser visualizado na Figura 1, que ilustra os diferentes estágios da interceptação pela vegetação durante um evento chuvoso.

O estudo da interceptação pela vegetação começou a se desenvolver no século XX, com o aumento do interesse na compreensão dos processos hidrológicos e sua relação com a vegetação. Inicialmente, os estudos sobre interceptação focavam principalmente na mensuração da quantidade de água retida pela vegetação e na análise da sua relação com a precipitação (CALDER, 1986; GASH, 1979; HORTON, 1919; LEYTON; REYNOLDS; THOMPSON, 1967; RUTTER et al., 1971; RUTTER; MORTON; ROBINS, 1975). Desde então, diversas pesquisas foram realizadas em todo o mundo, buscando entender sua influência nos processos hidrológicos e os mecanismos que a influenciam, como a estrutura da vegetação, a morfologia das gotas de chuva e a intensidade da precipitação (HOLDER et al., 2020; YANG et al., 2019). Além disso, o estudo da interceptação se expandiu para além da hidrologia, com pesquisas que visam compreender os impactos da interceptação na ecologia, biogeoquímica e mudanças

climáticas (LEVIA; FROST, 2003; MIRALLES et al., 2010; QIAN et al., 2022; RODRIGUES et al., 2021; VAN STAN; PYPKER, 2015).

Figura 1 - Ilustração simplificada do processo de interceptação. Precipitação

Fonte: Elaborado pela autora (2023).

Dentro desse contexto, o enfoque deste trabalho é na perda por interceptação. Isso se justifica pelo fato de que *I* é um componente significativo e, por vezes, dominante da evapotranspiração (PRICE; CARLYLE-MOSES, 2003). Sua compreensão é de grande importância, pois ela afeta a disponibilidade de água para o solo e contribui para a regulação dos fluxos hidrológicos. Através da retenção de água na vegetação, a perda por interceptação influencia o suprimento hídrico para as plantas, a infiltração no solo e o escoamento superficial (LIU et al., 2022). Além disso, *I* também desempenha um papel na modulação dos processos climáticos e na conservação de recursos naturais. As áreas vegetadas, especialmente aquelas cobertas por árvores, têm maior capacidade de interceptar a chuva, o que pode influenciar a temperatura, a umidade relativa do ar e a ocorrência de precipitação em determinadas regiões. Em comparação com as florestas, a vegetação mais rasteira possui uma menor capacidade de capturar energia do ambiente para aumentar as taxas de evaporação (CALDER, 1998). As diferenças na evapotranspiração dos diversos tipos de cobertura vegetal são essencialmente devidas à *I* (CALDER; DYE, 2001; CALDER, 1998; ROBERTS; PITMAN; WALLACE,

1982). Estudos anteriores (p. ex. ANDREASEN et al., 2023; QUEIROZ et al., 2021; WANG; WANG; ZHANG, 2022) demonstraram que *I* é sensível às variações nas características da chuva, na estrutura morfológica da vegetação e nas condições meteorológicas, apresentando desafios próprios para seu estudo. Os próximos tópicos deste trabalho se dedicam a uma explanação mais detalhada sobre a perda por interceptação, abordando aspectos teóricos, métodos e técnicas utilizados na medição e estimativa, e desafios relacionados a sua estimativa por sensoriamento remoto.

2.2 COMPREENDENDO A PERDA POR INTERCEPTAÇÃO: TEORIA, DESAFIOS E MÉTODOS DE ESTIMATIVA

Em termos conceituais, a perda por interceptação (*I*) pode ser entendida como uma saída do balanço hídrico local, uma vez que a água não atinge o solo e, portanto, não contribui para a recarga de lençóis freáticos ou para o escoamento superficial (FATHIZADEH et al., 2018; MA et al., 2019; NÓBREGA, 2014). Apesar de *I* não apresentar benefícios diretos para a recarga dos aquíferos ou para o escoamento, é importante destacar que essa perda desempenha um papel fundamental na dinâmica dos ecossistemas. A evaporação da água interceptada regula a temperatura local e fornece umidade para a atmosfera, atuando como uma "perda" de água para os ecossistemas e um "ganho" de umidade para a atmosfera (ZHONG et al., 2022). Por essa razão, compreender a perda por interceptação é crucial para entender o balanço hídrico local e a dinâmica da água em ecossistemas terrestres.

A dinâmica de *I* é influenciada por diversos fatores, que podem apresentar desafios para seu estudo e sua quantificação precisa, mas também oferecem oportunidades para aprofundar a compreensão sobre a relação entre vegetação e ciclo hidrológico. Esses fatores incluem mudanças na estrutura e características da vegetação, área foliar, espécies de plantas, entre outros aspectos (NÓBREGA, 2014; RIBEIRO FILHO, 2018). Por exemplo, a mudança na cobertura vegetal, como desmatamento ou reflorestamento, pode causar redução ou aumento na quantidade de água interceptada, respectivamente. Além disso, variações na precipitação e nas condições microclimáticas, tais como intensidade da chuva, velocidade do vento e umidade relativa, também podem afetar o processo (FATHIZADEH et al., 2017; GERRITS; SAVENIJE, 2011; NÁVAR, 2020). Todas essas variáveis se inter-relacionam de maneiras complexas, o que torna o estudo da interceptação uma atividade desafiadora.

Compreender e quantificar *I* exige a aplicação de métodos e modelos adequados que levem em conta essa interação complexa entre as variáveis. Para isto são utilizados diferentes

métodos, que podem variar desde observações diretas em campo até técnicas mais sofisticadas de sensoriamento remoto. Um dos métodos mais comuns é o uso de coletores de água colocados sob a vegetação para coletar o gotejamento proveniente das copas das plantas, enquanto o escoamento pelo tronco é coletado por calhas em espiral presas ao tronco. Os coletores são estrategicamente colocados em locais representativos dentro da área de estudo, levando em consideração a densidade da vegetação e as variações espaciais da cobertura vegetal. A perda por interceptação é então determinada por meio da diferença entre a precipitação bruta e a soma do gotejamento proveniente das copas das plantas e o escoamento ao longo dos troncos. Para uma análise mais detalhada sobre a metodologia empregada na coleta de dados de *I*, recomendase consultar o estudo de David, Valente e Gash (2005).

Outro método comum consiste na aplicação de modelos matemáticos para estimar a interceptação. Esses modelos, fundamentados em princípios hidrológicos e físicos, permitem integrar dados sobre clima e vegetação, sendo úteis para entender como a vegetação afeta o ciclo hidrológico e para prever a quantidade de água que é interceptada pela vegetação em diferentes condições climáticas. No próximo tópico, serão abordados os modelos de estimativa mais usuais utilizados para estimar a perda por interceptação, incluindo o modelo adotado neste estudo.

2.3 MODELOS DE ESTIMATIVA DA PERDA POR INTERCEPTAÇÃO

O primeiro pesquisador a modelar a perda por interceptação foi Robert E. Horton (MUZYLO et al., 2009). Em seu artigo intitulado "*Rainfall interception*", publicado em 1919, Horton introduziu o conceito de perda por interceptação pela vegetação, que poderia ser compreendida como (HORTON, 1919):

$$I = S + k_1 \cdot E \cdot t \tag{2.1}$$

Onde: *S* é a capacidade de armazenamento da planta; k_1 é a proporção da superfície evaporativa em relação a área projetada das folhas; *E* é a taxa de evaporação; e *t* é a duração da precipitação.

Desde então, outros modelos foram desenvolvidos para estimar *I* em diferentes ecossistemas. Alguns desses modelos incluem regressão simples baseada na precipitação total e o número de eventos chuvosos (HELVEY; PATRIC, 1965). Esses modelos são relativamente simples de implementar, mas podem ter limitações em termos de sua aplicabilidade em diferentes condições ambientais. Ademais, modelos estocásticos (p. ex. CALDER, 1986) também foram propostos para levar em conta a variabilidade espacial e temporal da interceptação da água. Esses modelos geralmente usam simulações baseadas em estatísticas e probabilidades para estimar a perda por interceptação, levando em consideração a variabilidade

dos parâmetros hidrológicos e climáticos. Por sua vez, modelos de base física são geralmente mais complexos e levam em conta os processos físicos que ocorrem na interação entre a vegetação e a água da chuva. Esses modelos são capazes de incorporar informações sobre a estrutura da vegetação, características climáticas e hidrológicas do local, entre outras variáveis relevantes. Exemplos de modelos de base física incluem os modelos de Rutter (1971) e de Gash (1979).

O modelo de Rutter e suas modificações (RUTTER et al., 1971; RUTTER; MORTON; ROBINS, 1975) representam o processo de interceptação por meio de balanço hídrico. Nele, a árvore atua como um tanque de armazenamento, que possui como entrada a precipitação bruta e como saídas a evaporação da água retida pelo dossel, a evaporação da água armazenada no tronco, a chuva interna e o escoamento pelo tronco (RUTTER; MORTON; ROBINS, 1975). Por sua vez, o modelo de Gash e suas subsequentes revisões (GASH, 1979; GASH; VALENTE; DAVID, 1999; VALENTE; DAVID; GASH, 1997) são uma simplificação do modelo de Rutter (1971), que o torna mais acessível e prático de aplicar em diferentes contextos e ecossistemas (PRICE; CARLYLE-MOSES, 2003). A principal suposição do modelo de Gash é que é possível representar o padrão real de precipitação pela análise de diferentes eventos discretos de chuva, compostos por: (1) período de umedecimento, quando a precipitação bruta é menor que o valor de limiar necessário para saturar a copa $(P_q < P'_q)$; (2) período de saturação; e, (3) período de secagem após o término da chuva (GASH, 1979; GERRITS; SAVENIJE, 2011). Assim, há uma distinção entre o número de chuvas que não conseguem saturar o dossel (m chuvas) e o número de eventos com intensidade suficiente para saturar o dossel (n chuvas). Essa separação enfatiza a importância das condições meteorológicas em relação à estrutura da planta (MUZYLO et al., 2009).

Para isso, Gash (1979) fez as seguintes considerações: (1) os eventos de chuva podem ser representados como uma série de eventos separados por tempo suficiente para que o dossel e o tronco sequem. A partir dessa suposição é possível substituir a taxa real de chuva e de evaporação de cada precipitação pelas taxas médias; (2) as condições meteorológicas durante o umedecimento do dossel são similares durante todos os eventos e podem ser representadas por uma taxa média de precipitação e de evaporação; (3) durante a fase de umedecimento não há gotejamento, e, após o evento, a quantidade de água armazenada no dossel é rapidamente reduzida ao valor da capacidade de armazenamento necessário para a saturação da copa, independentemente das características do evento. Essas considerações são relevantes por tornar

a dependência da perda por interceptação desses parâmetros explícita, facilitando a extrapolação para distintas florestas e regiões climáticas (GASH, 1979).

Em sua versão original, o modelo analítico necessita de seis parâmetros: taxa média de precipitação (\bar{R} , mm.h⁻¹) e taxa média de evaporação (\bar{E} , mm.h⁻¹) sob condições de dossel saturado, capacidade de armazenamento do dossel (S, mm) e do tronco (S_t, mm) , coeficiente de precipitação livre (p) e proporção da chuva desviada para o escoamento pelo tronco (p_t). O modelo foi reformulado para levar em consideração a esparsidade do dossel, substituindo p pela fração de cobertura do dossel (c) e redefinindo o processo de interceptação pelos troncos (GASH; LLOYD; LACHAUD, 1995; VALENTE; DAVID; GASH, 1997). Nessa nova versão, a evaporação e a capacidade de armazenamento do dossel são reduzidas proporcionalmente à cobertura do dossel (VALENTE et al., 2020). Comparado com o modelo original, sua versão revisada apresenta uma melhor descrição da interceptação em florestas esparsas. Para Shi, Bao e Liang (2022), essa modificação proporciona uma melhoria na simulação do fluxo de água do dossel. Portanto, o modelo esparso de Gash foi selecionado como a escolha metodológica para este estudo, em virtude de sua simplicidade e aplicabilidade, bem como sua ampla adoção em pesquisas hidrológicas em âmbito global tendo sido submetido a testes e validações utilizando dados de campo, evidenciando sua capacidade de fornecer estimativas acuradas da I, mesmo em ecossistemas florestais sujeitos a perturbações (SU et al., 2022b).

No modelo revisado de Gash (GASH; LLOYD; LACHAUD, 1995), também conhecido como modelo esparso de Gash, considera-se que a taxa média de evaporação por unidade de área do solo utilizada na versão original do modelo (\bar{E}) é igual à taxa com a qual a água interceptada pelo dossel se evaporará em condições de saturação. Contudo, dado que a evaporação ocorre apenas em áreas vegetadas, é necessário multiplicar \bar{E} pela fração de cobertura vegetal para que a referência seja ajustada para a área de solo. Ou seja, enquanto o modelo original particiona a precipitação; o modelo revisado particiona a evaporação. Um erro comum, identificado durante a revisão bibliográfica, é este cálculo ser feito através da divisão pela fração de cobertura vegetal. Assim, se a evaporação ajustada para a área de solo é denominada \bar{E}_c e assumindo que não há gotejamento do dossel antes da saturação, a quantidade de precipitação bruta necessária para saturar o dossel (P'_a) é dada por:

$$P'_{g} = -\frac{\bar{R}}{\bar{E}_{c}} \cdot S_{c} \cdot \ln\left[1 - \left(\frac{\bar{E}_{c}}{\bar{R}}\right)\right]$$
 2.2

Considerando uma série de *n* chuvas grandes o suficiente para saturar a copa, *m* eventos que não conseguem saturar o dossel e um período entre chuvas suficiente grande para a copa

secar entre os eventos, tem-se que a interceptação da precipitação pode ser estimada como o somatório da perda por interceptação durante *m* chuvas (I_C), perda por interceptação durante fase de umedecimento (I_W), evaporação durante fase de saturação (I_S), evaporação após findar a chuva (I_A) e evaporação da água retida pelos troncos (I_T)

Assim, para *m* chuvas incapazes de saturar o dossel, obtém-se o componente I_C (referenciada à área de solo) a partir da Equação 2.3.

$$I_C = c \sum_{j=1}^m P_g$$
 2.3

Para n chuvas capazes de saturar o dossel, a perda por interceptação é dada pelas Equações 2.4, 2.5 e 2.6 para a perda por interceptação durante as fases de umedecimento, de saturação até final da chuva e evaporação após fim da precipitação, respectivamente.

$$I_W = n \cdot c \cdot (P'_g - S_c) \tag{2.4}$$

$$I_{S} = \frac{\bar{E}_{c}}{\bar{R}} \sum_{j=1}^{n} (P_{g,j} - P_{g}')$$
 2.5

$$I_A = n \cdot c \cdot S_c \tag{2.6}$$

Onde: S_c é a capacidade de retenção da vegetação referenciada à área de cobertura (S/c).

Por fim, evaporação da água retida pelos troncos para q eventos que saturam os troncos:

$$I_T = q \cdot S_t + p_t \sum_{j=1}^{n-q} P_{g,j}$$
 2.7

2.4 DESAFIOS NA UTILIZAÇÃO DE DADOS DE SENSORIAMENTO REMOTO PARA A ESTIMATIVA DA PERDA POR INTERCEPTAÇÃO

Estimar a perda por interceptação em grandes escalas, como regionais e globais, representa um desafio significativo devido à complexa interação entre a vegetação e *I*. A variabilidade temporal e espacial dos fatores que influenciam *I*, como a estrutura da vegetação, as características do dossel, a precipitação e as condições microclimáticas, tornam a obtenção de estimativas precisas e abrangentes uma tarefa complexa. Além disso, as características da vegetação e as condições climáticas podem variar amplamente em diferentes regiões do mundo. Para superar esses desafios, diferentes abordagens são empregadas, como a integração de dados

de sensoriamento remoto de alta resolução. A utilização de imagens de satélite permite uma visão abrangente da cobertura vegetal e da distribuição da chuva em grandes áreas, possibilitando uma avaliação mais precisa da perda por interceptação em escalas regionais e globais.

Atualmente, uma ampla gama de bancos de dados contendo séries históricas de diversas variáveis, obtidas por sensoriamento remoto, está disponível. No entanto, para atender a demanda pelos dados necessários ao modelo de Gash, torna-se essencial o acesso a informações que não apenas representem séries de longos períodos, mas também possibilitem a análise em escalas mais curtas, como a escala subdiária e diária (Tabela 1). A incorporação de dados de sensoriamento remoto ao modelo de Gash permite capturar a variabilidade espacial e temporal na cobertura vegetal e distribuição da chuva, resultando em estimativas mais atualizadas e espacialmente representativas das perdas por interceptação (CUI; JIA, 2014). Isso é especialmente importante em ambientes grandes e complexos, onde as medições em campo podem ser limitadas ou indisponíveis (ZHENG; JIA, 2020).

Produto	Versão	Sigla	Instituição	Descrição	Principais	Cobertura	Resolução	Resolução	Referência
					variáveis	temporal	temporal	espacial	
Tropical Rainfall	3B42	TRMM	NASA/JAXA	Combina estimativas de	Precipitação	Jan/1998 -	3 horas	0,25°	Huffman et
Measuring Mission				precipitação por sensores micro-		Dez/2019			al. (2007)
				ondas e infravermelho de vários					
				satélites.					
Integrated Multi-	6	IMERG	NASA	Sucessor do TRMM. Conjunto de	Precipitação	Jun/2000 -	30 min	0,1°	Huffman et
satellitE Retrievals				dados que combina informações		Atualmente			al. (2019b,
for Global				de múltiplos satélites, que					2019a)
Precipitation				incorpora dados de várias fontes e					
Measurement				sensores, para fornecer					
				estimativas de precipitação global					
				em alta resolução temporal e					
				espacial					
CPC Morphing	-	CMORPH	NOAA	Este conjunto de dados fornece	Precipitação	Jan/1998 -	1 hora	0,25°	Xie et al.
Technique				estimativas globais de		Atualmente			(2023)
				precipitação, corrigidas e					
				reprocessadas pela técnica CPC					
				Morphing					
Global Satellite	6	GSMaP	JAXA	Os valores são estimados usando	Precipitação	Mar/2014	1 hora	0,1°	Okamoto
Mapping of				sensores micro-ondas e		-			et al.
Precipitation				infravermelho do satélite GPM		Atualmente			(2005)
				Core Observatory e com a ajuda					

Tabela 1 – Descrição de produtos climatológicos de sensoriamento remoto com alta resolução temporal.

Produto	Versão	Sigla	Instituição	Descrição	Principais	Cobertura	Resolução	Resolução	Referência
					variáveis	temporal	temporal	espacial	
				de uma constelação de outros					
				satélites.					
Precipitation	-	PERSIANN-	CHRS	Suas estimativas de precipitação	Precipitação	Jan/1983 -	1 hora	0,04°	Sadeghi et
Estimation From		CCS-CDR		são derivadas da combinação do		Atualmente			al. (2021)
Remotely Sensed				PERSIANN-CCS e PERSIANN -					
Information Using				CDR, que utilizam imagens de					
Artificial Neural				satélites geoestacionários e					
Networks - Cloud				procedimentos de redes neurais					
Classification				artificiais (RNA).					
System - Climate									
Data Record									
Multi-Source	2.8	MSWEP	GloH2O	Conjunto de dados de	Precipitação	1979 –	3 horas	0,1°	Beck et al.
Weighted-Ensemble				precipitação global, que integra		Atualmente			(2017,
Precipitation				observações diárias de					2019)
				pluviômetros e ajusta os horários					
				de relato dos pluviômetros para					
				minimizar as discrepâncias					
				temporais entre as estimativas de					
				reanálise por satélite e as					
				observações de pluviômetros					
Global Land Data	2.1	GLDAS	NASA	É um sistema de assimilação de	Precipitação,	Jan/2000 -	3 horas	0,25°	Rodell et
Assimilation System				dados para estimar as condições	albedo,	Atualmente			al. (2004)
				da superfície terrestre, incluindo a	evaporação				

Produto	Versão	Sigla	Instituição	Descrição	Principais	Cobertura	Resolução	Resolução	Referência
					variáveis	temporal	temporal	espacial	
				precipitação, por meio da	potencial,				
				combinação de simulações de	temperatura				
				modelo e dados observacionais	do solo				
Climate Hazards	2 Final	CHIRPS	UCBS	É um conjunto de dados de	Precipitação	Jan/1981 -	1 dia	0,05	Funk et al.
Group InfraRed				precipitação quase global que		Atualmente			(2015)
Precipitation With				incorpora imagens de satélite com					
Station Data				dados de estação in situ para criar					
				séries temporais de precipitação.					
ERA5-Land	-	-	Copernicus	Conjunto de dados de reanálise	Temperatura	1981 -	1 hora	0,1°	Muñoz-
			Climate Data	atmosférica global. A reanálise	do ar,	Atualmente			Sabater et
			Store	combina dados de modelos com	umidade,				al. (2021)
				observações de todo o mundo.	albedo,				
				Apresenta resolução melhorada	velocidade				
				em comparação com ERA5.	do vento,				
					radiação,				
					evaporação,				
					pressão				
					atmosférica				
NCEP Climate	2	CFS	NOAA	É um modelo que representa a	Temperatura	Jan/1979 -	6 horas	$0,5^{\circ}$	Saha et al.
Forecast System				interação entre a atmosfera, os	do ar,	Atualmente			(2014)
				oceanos e a crosta terrestre.	velocidade				
				Apresenta séries temporais de	do vento,				
				previsão de diversas variáveis.	evaporação				

variáveis	temporal	temporal	espacial	
potencial,				
radiação				

Nota: CHRS é o Centro de Hidrometeorologia e Sensoriamento Remoto da Universidade da Califórnia, Irvine (UCI); JAXA é a Agência Japonesa de Exploração Aeroespacial;

NASA é a Administração Nacional da Aeronáutica e Espaço; NOAA é a Administração Oceânica e Atmosférica Nacional; UCBS é a Universidade da California, Santa Barbara.

Fonte: Elaborado pela autora (2023).

No entanto, é importante destacar que, apesar dos avanços tecnológicos e metodológicos, ainda existem incertezas associadas a essa estimativa. Uma das principais limitações reside na natureza indireta da estimativa de *I*, uma vez que não está diretamente disponível nas imagens de satélite. Como resultado, as abordagens existentes para estimar *I* a partir de dados de sensoriamento remoto dependem da utilização de modelos físicos. Alguns estudos têm utilizado dados de sensoriamento remoto de alta resolução em nível local para obter informações detalhadas sobre a estrutura da vegetação e focam em sua adequação na modelagem de *I* (BOLAÑOS-SÁNCHEZ et al., 2021). Por outro lado, outros estudos, como os conduzidos por Martens et al. (2017) e Zhang et al. (2019b), têm direcionado seus esforços para estimar *I* em escalas mais abrangentes. Os resultados obtidos nesses estudos estão refletidos em dois produtos de *I* globais: o Penman-Monteith-Leuning Evapotranspiration V2 (PMLv2) e o Global Land Evaporation Amsterdam Model (GLEAM) (v3.7a e v3.7b).

Ambos os conjuntos de dados foram amplamente utilizados e validados em diferentes tipos de vegetação (DING; ZHU, 2022; QINGMING et al., 2022). O modelo PMLv2 enfoca na estimativa da evapotranspiração total, com base na soma de três componentes: evaporação direta do solo, transpiração do dossel da planta e *I* (ZHANG et al., 2019b). Por sua vez, o GLEAM é um modelo projetado para estimar a evaporação terrestre e a umidade do solo na zona das raízes a partir de dados de satélite (MARTENS et al., 2017). Similar ao PMLv2, o GLEAM também estima os vários componentes da evaporação. Em ambos os produtos, *I* é estimado com base no modelo esparso de Gash (Gash et al., 1995). No entanto, as estimativas de *I* variam devido às diferenças nos produtos de sensoriamento remoto e nos métodos utilizados para parametrizar a vegetação (ZHONG et al., 2022). Por exemplo, MSWEP e GLDAS são os produtos de precipitação usados por GLEAM e GLDAS, respectivamente. Assim, limitações relacionadas à resolução espacial e qualidade dos dados de sensoriamento remoto, bem como a parametrização dos modelos são alguns dos aspectos que podem afetar a precisão das estimativas de *I*.

3 METODOLOGIA

O presente estudo empregou uma metodologia criteriosa, iniciando com uma revisão bibliográfica abrangente para identificar estudos em campo que abordassem a perda por interceptação. Posteriormente, foram selecionados os estudos com dados disponíveis para a modelagem dos parâmetros de vegetação, a fim de garantir a confiabilidade dos resultados. Para a estimativa da perda por interceptação em áreas florestais em diferentes partes do mundo, utilizou-se dados de sensoriamento remoto que foram previamente filtrados para evitar interferências de sombras, nuvens e neve. Ao final do processo, os resultados foram comparados com produtos globais preexistentes de interceptação. Cada etapa metodológica será detalhada a seguir, permitindo uma compreensão mais profunda e clara do estudo.

3.1 SELEÇÃO DE ESTUDOS EM CAMPO PARA ESTIMATIVA DA PERDA POR INTERCEPTAÇÃO

O levantamento bibliográfico é uma etapa essencial para a elaboração de uma pesquisa consistente e fundamentada. Nesse sentido, o objetivo desta seção foi coletar e compilar um conjunto de dados de perda por interceptação global com base em artigos científicos que atendessem aos seguintes critérios: (a) dados de particionamento da precipitação obtidos a partir de experimentos em campo e (b) dados em nível de árvore ou de comunidade. O primeiro critério é importante para assegurar que os dados de perda por interceptação foram medidos diretamente e não estimados a partir de modelagens ou simulações. Já o segundo critério é necessário porque a perda por interceptação pode variar significativamente dependendo da estrutura da vegetação, e as medições em nível de árvore ou de comunidade foram consideradas precisas e representativas. Assim, esses critérios foram estabelecidos para garantir a qualidade e a confiabilidade dos dados utilizados na coleta do conjunto de dados de perda por interceptação.

O banco de dados de meta-análise foi compilado a partir de estudos publicados entre janeiro de 1984 e novembro de 2022 e indexados nas bases de dados do Google Scholar (https://scholar.google.com.br/), Scopus (https://www.scopus.com/), Web of Science (https://www.webofscience.com/) ou Portal de Periódicos CAPES

(https://www.periodicos.capes.gov.br/). O período de estudo foi delimitado em função da disponibilidade dos dados do satélite Landsat. As palavras-chave utilizadas na busca foram: ("rainfall interception" OU "canopy interception") E ("Gash model" OU "Rutter model" OU "Liu model") E ("storage capacity" OU "canopy cover"). Em seguida, foram examinados os

textos completos de todos os artigos identificados na busca para extrair as informações relevantes para o estudo. Esse processo permitiu a seleção de pesquisas que forneceram dados confiáveis para a estimativa da perda por interceptação em diferentes regiões do mundo.

Para garantir a qualidade dos dados utilizados, foram estabelecidos critérios de inclusão e classificação baseados em três aspectos principais: precisão das coordenadas geográficas, tamanho da área e disponibilidade de imagens de satélite para o período de estudo. O critério de precisão das coordenadas geográficas foi utilizado para garantir que as áreas selecionadas fossem corretamente identificadas. O tamanho da área foi considerado para garantir que as áreas incluídas fossem representativas o suficiente para fornecer estimativas confiáveis de interceptação e minimizar possíveis interferência de construções ou outras alterações antrópicas que pudessem afetar o imageamento. Finalmente, a disponibilidade de imagens de satélite para o período de estudo foi verificada após a aplicação de filtros. Essa etapa visa a remoção de imagens com problemas técnicos, tais como interferência atmosférica, nuvens, sombras, falhas de sensoriamento e outras fontes de ruído que pudessem comprometer a qualidade dos dados utilizados, minimizando possíveis erros ou vieses. As áreas experimentais foram então classificadas em cinco categorias, de A a E, de acordo com esses critérios.

As áreas experimentais classificadas como A foram georreferenciadas com alta precisão em arco-segundo, ou seja, utilizando coordenadas geográficas expressas em graus, minutos e segundos. Essas áreas foram consideradas ideais para a coleta de dados devido à sua precisão. A classe B, embora tenha uma precisão geográfica ligeiramente menor, em arcominuto, ou seja, expressa apenas em graus e minutos, apresenta características de homogeneidade em termos de vegetação e ausência de interferências antropogênicas. Portanto, também foi considerada adequada para a coleta de dados. Tanto os experimentos classificados como A quanto B serviram ao duplo propósito de desenvolver modelos de parâmetros da vegetação e avaliar o desempenho da estimativa de *I*. Áreas experimentais com localização em resolução de arco-minuto, mas inseridos em cobertura vegetal heterogênea, foram categorizados como C. Com suas limitações inerentes, esses locais foram usados exclusivamente para avaliar o desempenho da estimativa de I. As áreas classificadas como D foram excluídos devido à baixa proporção de vegetação em relação ao tamanho do pixel do Landsat ou a uma localização ainda mais imprecisa, por exemplo, amplitude de coordenadas, resultando em variações significativas na localização geográfica relatada. Por fim, as áreas experimentais, inicialmente categorizados entre A e D, estavam sujeitos a reclassificação como
E caso não houvesse disponibilidade de imagens de satélite. Essa reclassificação tinha o objetivo de auxiliar o leitor a identificar de forma mais simplificada as áreas que careciam desses dados. Assim, apenas as áreas classificadas como A ou B foram utilizadas para desenvolver modelos de regressão linear. As classes A, B e C foram incluídas desempenho da estimativa de *I*, enquanto as áreas classificadas como D ou E foram excluídas dessas análises.

A exclusão das áreas classificadas como D pode acarretar na perda da diversidade na amostra, uma vez que essas áreas poderiam apresentar características e condições únicas de vegetação e solo que não foram capturadas nas áreas selecionadas como A, B ou C. No entanto, a exclusão dessas áreas garante que os dados coletados sejam de áreas com localizações confiáveis e vegetação adequada para o estudo, contribuindo para a obtenção de um banco de dados mais robusto e tornando a análise mais consistente. Ademais, as áreas experimentais foram classificadas em categorias distintas de acordo com a vegetação estudada, nomeadamente, coníferas, caducifólias, perenes, eucaliptos e arbustos. Essa classificação foi baseada no tipo de vegetação predominante mencionado nos artigos. Todos os metadados coletados da revisão da literatura estão listados nos Apêndices A (descrição dos locais de estudo) e B (descrição dos parâmetros climatológicos e de vegetação obtidos em campo).

3.2 GLOBAL INTERCEPTION MODEL (GIM)

Desenvolvido a partir do modelo esparso de Gash, o *Global Interception Model* (GIM) foi elaborado para abordar os desafios inerentes à obtenção de estimativas precisas de *I* em escala regional e global. Na escala regional, a resolução de pixel dos dados de sensoriamento remoto impõe desafios na distinção de componentes individuais da vegetação, incluindo troncos, galhos, caules e folhas. Para superar essa limitação, o modelo GIM incorpora uma adaptação na qual a copa e os troncos são tratados como uma única unidade (CUI; JIA, 2014; VAN DIJK; BRUIJNZEEL, 2001a; ZHENG; JIA, 2020). Para isso, em vez de considerar a capacidade de armazenamento total parametrizada por dois parâmetros separados, adota-se uma capacidade de armazenamento da vegetação (S_v) como a soma das capacidades de armazenamento da copa (*S*) e do tronco (S_t). Para realizar a estimativa de $c \in S_v$, o GIM utiliza modelos de regressão linear, os quais estabelecem relações empíricas entre as reflectâncias espectrais e os índices biofísicos obtidos por sensoriamento remoto de alta resolução, e os parâmetros de interesse. Os outros dois parâmetros essenciais para executar o modelo Gash e que são necessários para o GIM, que são as taxas médias de precipitação e as taxas de evaporação sob condições de dossel saturado, foram adquiridos por meio da integração dos produtos meteorológicos MWSEP e ERA5-Land. A metodologia adotada neste estudo foi representada em um fluxograma (Figura 2) que ilustra as etapas-chave do processo de estimativa de *I* usando o GIM.

Nota: A coloração verde indica o processo de desenvolvimento do GIM (*Global Interception Model*); a tonalidade vermelha destaca a fase de análise do GIM; a gradação de cores corresponde a diferentes etapas do processo de elaboração e análise, indicando o fluxo de informações.

Fonte: Elaborado pela autora (2023).

Para facilitar a visualização das diferenças entre as equações do modelo de Gash e do GIM, as formulações de cada modelo foram resumidas na Tabela 2.

Tabela 2 – Equações do modelo de Gash e suas versões revisadas

Componentes	Versão original	Versões revisadas		
do modelo	Gash (1979)	Gash et al. (1995)	GIM	
Quantidade de ág	ua bruta necessária para saturar (o dossel (P'_g):		
	$-\frac{\overline{R}\cdot S}{\overline{E}}\cdot \ln\left[1-\frac{\overline{E}}{\overline{R}\cdot (1-p-p_t)}\right]$	$-\frac{\bar{R}\cdot S_c}{\bar{E}_c}\cdot ln\left[1-\left(\frac{\bar{E}_c}{\bar{R}}\right)\right]$	$-\frac{\overline{R}\cdot S_{v}}{\overline{E}_{c}}\cdot ln\left[1-\left(\frac{\overline{E}_{c}}{\overline{R}}\right)\right]$	
Para <i>m</i> chuvas inc	capazes de saturar o dossel ($P_g < P_g$	P ' _g):		
	$(1-p-p_t)\sum_{j=1}^m P_{g,j}$	$c\sum_{j=1}^m P_{g,j}$	$c\sum_{j=1}^m P_{g,j}$	

Para *n* chuvas capazes de saturar o dossel $(P_g \ge P'_g)$:

Componentes	Versão original	al Versões revisadas			
do modelo	Gash (1979)	Gash et al. (1995)	GIM		
Umedecimento	$n \cdot (1 n n) (D' S)$	$m \cdot q \cdot (D' - S)$	$m \cdot q \cdot (D' - S)$		
do dossel	$n \cdot (1 - p - p_t)(r_g - 3)$	$n \cdot c \cdot (r_g - S_c)$	$n \cdot c \cdot (r_g - s_v)$		
Evaporação da					
saturação até	$\bar{E} \sum_{n=1}^{n} (p_{n}, p_{n})$	$\bar{E}_c \sum_{n=1}^{n} (R_n - R_n)$	$\bar{E}_c \sum_{n=1}^{n} (n - n)$		
que a chuva	$\overline{\bar{R}} \sum_{j=1}^{(P_{g,j} - P_g)}$	$\overline{\bar{R}} \sum_{j=1}^{(P_{g,j} - P_s)}$	$\overline{\bar{R}} \sum_{j=1}^{(P_{g,j} - P_g)}$		
cesse					
Evaporação					
após o término	$n \cdot S$	$n \cdot c \cdot S_c$	$n \cdot c \cdot S_v$		
da chuva					
Para q chuvas capaz	zes de saturar o tronco ($P_g > S_t/g$	p_t):			
Evaporação dos	m+n-q	n-q	Incluído na evanoração		

troncos	$q \cdot S_t + p_t \sum_{j=1} (P_j)$	$q \cdot S_c + p_t \sum_{j=1}^{k} (P_{g,j})$	j) do dossel
Onde: \bar{E} é a taxa médi	a de evaporação; \bar{E}_c é a	taxa média de evaporação ajustad	la para a área de solo; \overline{R} é a taxa

média de precipitação; S, S_t e S_v são as capacidades de armazenamento na copa, no tronco e na vegetação, respectivamente; P_g é a precipitação bruta; P_g ' é a quantidade de precipitação bruta para saturar o dossel; c é a fração de cobertura do dossel; n é o número de chuvas com intensidade suficiente para saturar o dossel; q é o número de chuvas com intensidade suficiente para saturar o tronco; p é o coeficiente de precipitação livre; p_t é a proporção da chuva desviada para o escoamento pelo tronco.

Fonte: Elaborado pela autora (2023).

3.2.1 Estimativa dos parâmetros de vegetação

Evaporação dos

A dinâmica da vegetação em áreas de pesquisa classificadas como A, B ou C foi monitorada utilizando os produtos Coleção 2 do Landsat com correção atmosférica. Beneficiando-se de sua cobertura temporal abrangente (1985-2022) e resolução espacial relativamente alta (30 metros de tamanho da célula da grade), as imagens foram adquiridas por meio dos sensores TM/Landsat 5, ETM+/Landsat 7 e OLI/Landsat 8. Com base nas bandas espectrais do Landsat, séries temporais de sete índices biofísicos distintos foram obtidas, a saber: Índice de Vegetação por Diferença Normalizada (NDVI), duas versões do Índice de Vegetação Aprimorado (EVI e EVI2), Índice de Vegetação Ajustado ao Solo (SAVI), Índice de Água por Diferença Normalizada (NDWI), Índice de Água por Diferença Normalizada Modificado (MNDWI) e albedo de superfície (SA) (Tabela 3). A escolha desses índices espectrais decorreu de sua relevância na detecção de variações fenológicas interanuais/sazonais. Estudos prévios os empregaram para discriminar sinais lenhosos-herbáceos, alterações na

Incluído na evaporação

biomassa, condições de estresse hídrico e efeitos do solo (ANCHANG et al., 2020; CUNHA et al., 2020)

1 / 11

. . . .

Índices espectrais	Equação	Referência
NDVI	$\frac{NIR - Red}{NIR + Red}$	Rouse Jr. et al (1974)
EVI	$G \cdot \frac{NIR - Red}{NIR + C_1 \cdot Red - C_2 \cdot Blue + L_1}$	Huete et al. (1994)
EVI2	$G \cdot \frac{NIR - Red}{NIR + 2,4 \cdot Red + L_1}$	Jiang et al. (2008)
SAVI	$\frac{(1+L_2)\cdot(NIR-Red)}{L_2+NIR+Red}$	Huete (1988)
NDWI	$\frac{Green - NIR}{Green + NIR}$	McFeeters (1996)
MNDWI	$\frac{Green - SWIR1}{Green + SWIR1}$	Xu (2006)
	Para Landsat 5 TM: 0,3206 · <i>Blue</i> + 0,1572 · <i>Red</i> + 0,3666 · <i>NIR</i> + +0,1162 · <i>SWIR</i> 1 + 0,0457 · <i>SWIR</i> 2 - 0,0063	Shuai et al. (2014)
SA	Para Landsat 7 ETM+: 0,3141 · <i>Blue</i> + 0,1607 · <i>Red</i> + 0,3694 · <i>NIR</i> + +0,1160 · <i>SWIR</i> 1 + 0,0456 · <i>SWIR</i> 2 - 0,0057	Shuai et al. (2014)
	Para Landsat 8 OLI: 0,2453 · <i>Blue</i> + 0,0508 · <i>Green</i> + 0,1804 · <i>Red</i> + +0,3081 · <i>NIR</i> + 0,1332 · <i>SWIR</i> 1 + 0,0521 · <i>SWIR</i> 2 - 0,0011	Wang et al. (2016)

Nota: G é um fator de ganho (2,5); L_1 e L_2 são os coeficientes de ajuste do solo (1 e 0,5, respectivamente); C_1 e C_2 são coeficientes da resistência do aerossol (6,0 e 7,5, respectivamente); *Red, Blue* e *Green* são as bandas do Vermelho, Azul e Verde, respectivamente; *NIR*: Banda do Infravermelho Próximo; *SWIR*: Banda Infravermelha de Ondas Curtas.

Fonte: Elaborado pela autora (2023).

Para mitigar os efeitos espectrais decorrentes de fatores externos, como nuvens, sombras e neve, foram aplicadas máscaras utilizando a banda binária de avaliação de qualidade do Landsat (QA Pixel). Adicionalmente, com o objetivo de assegurar a reprodutibilidade do estudo e a capacidade de prever os parâmetros da vegetação em diferentes situações, os índices espectrais foram analisados anualmente em cada período experimental, abrangendo tanto períodos úmidos quanto secos, bem como considerando a sazonalidade da vegetação. É esperado que variações em c e S_v ocorram de forma gradual ao longo dos estágios de sucessão, refletindo a evolução natural da cobertura florestal. Entretanto, mudanças mais abruptas e significativas nos parâmetros c e S_{ν} , provenientes de eventos como desmatamento, podas severas ou incêndios, podem ser mais adequadamente modeladas em períodos interanuais. Esses eventos representam perturbações expressivas no ecossistema vegetativo, causando alterações rápidas e marcantes nos parâmetros de vegetação. Ao considerar períodos interanuais para a modelagem dessas mudanças abruptas, torna-se possível capturar a evolução do ecossistema ao longo do tempo e identificar padrões mais consistentes e representativos das perturbações. Dessa forma, é possível distinguir entre variações naturais ao longo dos anos e eventos específicos que causaram impactos significativos nas características da vegetação. Além disso, a análise anual possibilita a inclusão de um ano hidrológico completo. Sendo possível capturar as flutuações nas condições climáticas que variam ao longo das estações do ano e que possuem um impacto significativo na dinâmica da vegetação e na disponibilidade de água para as plantas.

As reflectâncias espectrais e os índices biofísicos foram extraídos de uma área retangular de 16 pixels Landsat, aproximadamente 120x120m, centrada em cada local de experimento, com o objetivo de minimizar a influência de áreas sem vegetação. Além disso, essa opção também considera outros fatores que podem afetar a qualidade dos dados extraídos, como a presença de nuvens, especialmente as cirrus, que apresentam um aspecto tênue e suave (PORTELLA, 2022), mas que podem interferir na identificação das áreas vegetadas. O ruído decorrente da transição entre diferentes tipos de uso do solo também é levado em conta. Ademais, mesmo que o estudo indique coordenadas em arco-segundo, a localização da área experimental pode não estar alinhada com um único pixel. Em vez disso, ela pode se situar em uma região de transição entre pixels adjacentes. Então, selecionar mais pixels ajuda a suavizar o efeito destas possíveis contribuições.

Os dados de cada banda e índice biofísico foram coletados ao longo de um período de um ano. Esse procedimento permitiu a supressão de variações de frequência curtas, as quais poderiam ser influenciadas por fatores temporários e que não refletiriam mudanças significativas na vegetação ao longo do tempo. Nos experimentos que abrangeram vários anos, as séries temporais foram segmentadas em conjuntos anuais e, para cada ano, foram coletadas as métricas de interesse de cada reflectância espectral e índice biofísico. Essas métricas incluíam média, mediana, mínimo, máximo, 25° e 75° percentis, sendo todas consideradas como variáveis independentes para estimar *c* e *S*_v. Ou seja, esses dados foram agrupados através da média dos valores dos 16 pixels, resultando em uma única imagem multibanda composta por 78 índices. Todo o processo de extração e análise dos dados ocorreu na plataforma de computação em nuvem Google Earth Engine (GORELICK et al., 2017), aproveitando os recursos computacionais disponíveis para facilitar a análise em larga escala.

Para a estimativa de parâmetros de vegetação, foram construídas regressões lineares utilizando o método dos Mínimos Quadrados Ordinários (MQO) com busca exaustiva para os melhores subconjuntos de variáveis explicativas (reflectâncias espectrais e índices biofísicos). MQO é uma técnica estatística que pode ser usada para estimar a relação entre uma variável dependente e uma ou mais variáveis independentes (variáveis preditoras). O objetivo do MQO é encontrar o conjunto de parâmetros que minimize a soma dos quadrados dos desvios entre os dados observados e os dados estimados (KUTNER et al., 2005). Antes de ajustar os modelos lineares, variáveis preditoras que apresentavam o coeficiente de correlação absoluto (r) superior a 0,98 (|r| > 0,98) foram eliminadas e apenas uma delas ficou disponível para ser incluída no modelo. Variáveis preditoras que são altamente correlacionadas entre si são denominadas preditores redundantes. Isso significa que elas estão fornecendo informações sobre a mesma coisa e sua inclusão pode levar a erros computacionais e imprecisões (MEIRA et al., 2013; PENG; NAGATA, 2020). Por esse motivo, sua exclusão antes de ajustar as regressões lineares.

Após a remoção de preditores redundantes, ficou-se com 43 e 44 reflectâncias espectrais e índices biofísicos para buscar os melhores subconjuntos para parametrizar os modelos $c \in S_v$, respectivamente. Estudos com duração superior a um ano foram divididos em conjuntos anuais e utilizados para esse ajuste. Optou-se por essa abordagem porque os dados brutos apresentavam heterogeneidade no comportamento espectral da vegetação, ou seja, havia variações nos ciclos de vegetação ao longo do tempo. Além disso, para garantir a reprodutibilidade do estudo e permitir a predição dos parâmetros da vegetação em outras situações, os índices espectrais/variáveis independentes também foram analisados anualmente em cada período experimental. Dessa forma, os períodos úmidos e secos, bem como a sazonalidade da vegetação, foram considerados na análise. Geralmente, $c \in S_v$ apresentam uma variação gradual, decorrente da evolução natural da cobertura florestal. No entanto, mudanças mais abruptas e pronunciadas nesses parâmetros causadas, por exemplo, por desmatamento, podas severas ou incêndios podem ser modeladas em períodos interanuais. Por fim, o uso do intervalo de um ano garante a inclusão de um ciclo hidrológico completo.

Cada modelo linear foi limitado a no máximo cinco variáveis explicativas para garantir a simplicidade e a praticidade de sua aplicação. O número de preditores no melhor modelo linear foi em função do tamanho da amostra de cada tipo de vegetação. Quando o número de observações na amostra não excedeu 10, 20, 30 ou 40, o número de preditores do modelo foi definido como um, dois, três ou quatro, respectivamente. Para amostras com 40 ou mais observações, cinco variáveis independentes foram incluídas no modelo. Essa abordagem garantiu que a complexidade do modelo fosse adequadamente ajustada de acordo com os dados disponíveis, otimizando o equilíbrio entre o poder explicativo e o risco de *overfitting*. Para incorporar restrições físicas, quando o *c* estimado > 1, foi atribuído um valor de 1, pois não é fisicamente possível que a cobertura vegetal exceda este valor. A qualidade de cada modelo linear selecionado foi verificada pelo método *bootstrap* em um intervalo de confiança de 95%. O *bootstrap* envolveu a repetição do processo de modelagem 1.000 vezes, cada vez com uma amostra diferente dos dados, sorteados aleatoriamente com reposição.

Por fim, para avaliar os modelos lineares propostos, eles foram comparados com equações já existentes e difundidas na literatura. Para c, foram utilizadas como referência para a comparação a equação de Beer-Lambert, adaptada por van Dijk e Bruijnzeel (2001a), que está relacionada ao Índice de Área Foliar (IAF), a equação de Gutman e Ignatov (1997), que está relacionada ao Índice de Vegetação por Diferença Normalizada (NDVI) e a nova abordagem realizada por Zhong et al. (2022). Zhong et al. (2022) usaram em seu estudo as bandas Vegetation Continuous Fields (VCF) e a fração de radiação fotossinteticamente ativa absorvida (fPAR) obtidos do Moderate Resolution Imaging Spectroradiometer (MODIS) MOD44Bv6 e MCD15A3Hv6, respectivamente. Para comparação de S_{ν} , foram identificadas equações empíricas que estabelecem relações entre o Índice de Área Foliar (IAF) e a capacidade de armazenamento do dossel (S) (Tabela 4). Essa relação foi discutida em pesquisas realizadas por Bulcock e Jewitt (2012), Galdos et al. (2012) e Zheng e Jia (2020). O parâmetro S_v também foi comparado com o vD-model (VAN DIJK; BRUIJNZEEL, 2001a, 2001b) revisado por Zhong et al. (2022) com base em diferentes tipos de vegetação. Como foi considerado que S_v é dado pelo somatório de S e S_t , para a capacidade de armazenamento nos troncos (S_t) foram adotados os valores de 0,03 e 0,09 para vegetações baixas e alta, respectivamente, conforme Zhong et al. (2022).

Equações	Aplicação inicial	Referência
Equações relacionadas a fração de coberte	ura vegetal (c)	
$1 - e^{-k * IAF}$	Múltiplas coberturas	van Dijk e Bruijnzeel (2001a)
$(NDVI - NDVI_0) / (NDVI - NDVI_F)$	Múltiplas coberturas	Gutman e Ignatov (1997)
$VCF * [(fPAR_{diário} / fPAR_{médio}) + K(s)]$	Múltiplas coberturas	Zhong et al. (2022)

Tabela 4 – Equações relacionadas à c e Sv.

von Hoyningen-Huene (1981)
Leuning Kriedermann e McMurtrie
Leaning, Kriedermann e Weiviaraie
(1991)
Menzel (1996)
Gómez, Giráldez e Fereres (2001)
van Dijk e Bruijnzeel (2001a)
Wallace e McJannet (2008)
Galdos et al. (2012)

Equações relacionadas a capacidade de armazenamento do dossel (S)

Onde: k é o coeficiente de extinção da luz; NDVI₀ corresponde ao solo exposto ou vegetação esparsa; NDVI_F representa o solo totalmente coberto; fPAR_{diário} e fPAR_{médio} são os valores fPAR médios diários e anuais; S_L é a capacidade de armazenamento das folhas, sendo adotado os valores de 0,20 para a vegetação perene, 0,18 para as caducifólias, 0,29 para as coníferas e 0,10 para os arbustos conforme Zhong et al. (2022).

Fonte: Elaborado pela autora (2023).

Os resultados obtidos foram submetidos a análises estatísticas para determinar a precisão e a confiabilidade das estimativas fornecidas pelos modelos lineares em comparação com as outras equações utilizadas como referência. O desempenho dos modelos foi avaliado por quatro métricas estatísticas (Tabela 5):

Métricas estatísticas Faixa de valores (valor ideal) Equação $r = \frac{\sum_{i=1}^{N} (X_i - \bar{X}) \times (Y_i - \bar{Y})}{\sqrt{(\sum_{i=1}^{N} (X_i - \bar{X})^2) \times (\sum_{i=1}^{N} (Y_i - \bar{Y})^2)}}$ Coeficiente de correlação [0, 1](1)de Pearson (r) $NSE = 1 - \frac{\sum_{i=1}^{N} (X_i - Y_i)^2}{\sum_{i=1}^{N} (X_i - \bar{X})^2}$ Coeficiente de eficiência $]-\infty, 1](1)$ de Nash-Sutcliffe (NSE) $RMSE = \sqrt{\frac{\sum_{i=1}^{N} (X_i - Y_i)^2}{N}}$ Raiz do erro quadrático $[0, +\infty [(0)$ médio (RMSE) $\rho_c = \frac{2\sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 + (\bar{X} - \bar{Y})^2}$ Coeficiente de correlação [-1, 1](1)de concordância (ρ_c)

Tabela 5 – Métricas utilizadas para avaliar os modelos.

Onde: X e Y são valores observados e estimados, respectivamente, N é o número de observações, σ_{XY} é a covariância entre X e Y, σ_X^2 , σ_Y^2 , \overline{Y} , e \overline{X} são as variâncias e a média dos observados e valores estimados, respectivamente.

Fonte: Elaborado pela autora (2023).

3.2.2 Estimativa dos parâmetros climatológicos

Uma das equações mais utilizadas para estimar a taxa de evaporação em escalas horárias é a equação de Penman-Monteith (MONTEITH, 1965). Ela leva em conta diversos fatores ambientais e estruturais para calcular a taxa de evaporação. Entre eles, a radiação solar, temperatura do ar, umidade relativa do ar, velocidade do vento, pressão atmosférica, resistências à transferência de vapor água e características do solo. A equação é amplamente empregada em diversas áreas de estudos e pode ser expressa em valores horários como:

$$E = \frac{1}{\lambda} \frac{\Delta(R_n - G) + \rho_a c_p \left(\frac{e_s - e_a}{r_a}\right)}{\Delta + \gamma \left(1 + \frac{r_s}{r_a}\right)}$$
(3.1)

Onde: Δ é a inclinação da curva de pressão de vapor saturado (kPa °C⁻¹); R_n é o saldo de radiação (MJ m⁻² h⁻¹); Gé o fluxo de calor sensível para o solo (MJ m⁻² h⁻¹); ρ_a é a densidade do ar (kg m⁻³); c_p é o calor específico do ar (1.013 x 10⁻³ MJ kg⁻¹ °C⁻¹); e_s é a pressão de vapor saturado (kPa); e_a é a pressão de vapor real (kPa); r_a é a resistência aerodinâmica do ar (s m⁻¹); r_s é a resistência do dossel (s m⁻¹); λ é o calor latente de vaporização (2.45 MJ mm⁻¹ m⁻²); e_{γ} é a constante psicrométrica (kPa °C⁻¹).

ERA5-Land foi utilizado para a aquisição dos dados horários de temperatura do ar, pressão de vapor, velocidade do vento e radiação de ondas curtas necessários na aplicação da equação de Penman-Monteith. As variáveis do ERA5-Land utilizadas no presente estudo e suas unidades estão descritas na Tabela 6.

Sigla	Variável	Código no GEE	Unidade
R_{ns}	Radiação solar líquida	surface_net_solar_radiation_hourly	J m ⁻² h ⁻¹
R_{nl}	Radiação termal líquida	surface_net_thermal_radiation_hourly	J m ⁻² h ⁻¹
\overline{u}	Velocidade zonal do vento	u_component_of_wind_10m	$m \cdot s^{-1}$
$ar{v}$	Velocidade meridional do vento	v_component_of_wind_10m	$m \cdot s^{-1}$
T_a	Temperatura do ar a 2 metros	temperature_2m	Κ
T_{dew}	Temperatura do ponto de orvalho a 2 metros	dewpoint_temperature_2m	Κ

Tabela 6 – Variáveis do ERA5-Land utilizadas.

Fonte: Elaborado pela autora (2023).

Por convenção, ERA5-Land considera os fluxos verticais descendentes como positivos (MUÑOZ SABATER, 2019). Sendo assim, R_n foi calculado como (SINGER et al., 2021):

$$R_n = R_{ns} + R_{nl} \tag{3.2}$$

 R_{ns} representa a quantidade de energia proveniente da radiação solar que atinge a superfície terrestre, enquanto o R_{nl} corresponde à quantidade de energia irradiada pela superfície de volta para a atmosfera.

Dado que a pressão de vapor saturado está relacionada à temperatura do ar (T_a) , essa relação pode ser expressa pela seguinte equação (ALLEN et al., 1998):

$$e_s = 0.6108 * exp\left(\frac{17,27 \cdot T_a}{T_a + 237,3}\right)$$
 3.3

A pressão de vapor real do ar, por sua vez, pode ser relacionada a temperatura de orvalho (T_{dew}), conforme a seguinte equação (ALLEN et al., 1998; ZOTARELLI et al., 2020):

$$e_a = 0.6108 * exp\left(\frac{17,27 \cdot T_{dew}}{T_{dew} + 237,3}\right)$$
 3.4

A inclinação da curva da pressão de vapor saturado com a temperatura é dada por.

$$\Delta = \frac{4098 \cdot e_s}{(T_a + 237,3)^2}$$
 3.5

A constante psicrométrica é dada por (ALLEN et al., 1998):

$$\gamma = 0,665 \ge 10^{-3} P \qquad 3.6$$

Onde: P é a pressão atmosférica (kPa).

A resistência aerodinâmica do ar foi calculada da seguinte forma (BAVEN, 1979; BOLAÑOS-SÁNCHEZ et al., 2021; THOM, 1972):

$$r_a = \frac{\left(\ln\left[\frac{(z-d)}{z_0}\right]\right)^2}{k^2 u}, z \ge h$$
3.7

Onde z é a altura de medição da velocidade do vento (m); d é a altura de deslocamento do plano zero de referência (m); z_0 é a rugosidade da superfície que rege a transferência (m); k é a constante de von Kármán (0.41); u é a velocidade do vento na altura z (m·h⁻¹); h é a altura média da vegetação (m).

Seguindo Gash (GASH, 1979), as equações para o cálculo de d e z_0 foram relacionadas com a altura média da vegetação (h), conforme descritas a seguir:

$$z_0 = 0.1h$$
 3.8

$$d = 0,75h$$
 3.9

Quando os artigos não mencionaram explicitamente a altura da vegetação, atribuiu-se uma altura média para cada tipo específico de vegetação, utilizando dados coletados do banco de dados oriundo da meta-análise. Para coníferas, foi atribuída uma altura média de 17 metros, para caducifólias foi de 15 metros, e para vegetação perene foi de 24 metros. Todos os locais com vegetação arbustiva relataram a altura média. Os dados de velocidade do vento no ERA5-Land são fornecidos na forma vetorial, ou seja, em duas componentes, $\bar{u} \in \bar{v}$, correspondentes às direções leste-oeste e norte-sul, respectivamente. No entanto, para a aplicação na equação de Penman-Monteith, é necessário calcular a velocidade escalar do vento (m s⁻¹), dada por:

$$u = \sqrt{\bar{u}^2 + \bar{v}^2} \tag{3.10}$$

Quando a condição $z \ge h$ não é atendida, é necessário converter a velocidade do vento do ERA5-Land na altura original de 10 m para a altura desejada de extrapolação de acordo com o perfil logarítmico da velocidade do vento (CHEN; BUNDY; HOFF, 1998; JUSTUS; MIKHAIL, 1976). O perfil logarítmico assume que a velocidade do vento é proporcional ao logaritmo da altura acima do solo. Para isso, adotou-se uma altura de referência de 2 m acima da altura média da vegetação (z_2) relatada nos artigos. Assim:

$$u_2 = u \frac{ln\left(\frac{z_2 - d}{z_0}\right)}{ln\left(\frac{z - d}{z_0}\right)}$$

$$3.11$$

Consequentemente,

$$r_a = \frac{\left(\ln\left[\frac{z_2 - d}{z_0}\right]\right)^2}{k^2 u_2}$$
 3.12

Em relação à precipitação, foram utilizados três conjuntos de dados: IMERG, GLDAS e MSWEP. O MSWEP é particularmente valioso para este estudo devido ao seu período de observação mais longo, que permite a análise de períodos mais extensos. Em contraste, o IMERG e o GLDAS possuem um período de observação limitado (a partir de 2000), o que resultou na exclusão de muitos artigos durante a análise. Nesse contexto, o MSWEP foi escolhido como o conjunto principal de dados para comparação com o PML e o GLEAM, devido à sua disponibilidade temporal adequada para o período de estudo em questão.

Os dados meteorológicos utilizados no estudo foram restritos aos períodos mencionados nos artigos. Além disso, qualquer dado faltante devido a falhas no equipamento foi descartado, a fim de minimizar discrepâncias com os dados de sensoriamento remoto. Neste estudo, optou-se por seguir Gash (1979), assumindo que precipitação bruta (P_g) superior a 0,5 mm no intervalo horário representam as condições de dossel saturado necessárias para determinar \overline{R} e \overline{E} . Considerando que o MSWEP é fornecido em períodos de 3 horas, após a identificação dos períodos que atendem aos critérios de limite de 1,5 mm em uma escala semanal, a intensidade máxima de precipitação horária foi determinada. Este valor máximo

representa a maior intensidade de precipitação observada durante a semana. O valor final de \overline{R} para o período de estudo foi calculado como a média desses máximos selecionados. Usando este método, tentou-se minimizar a influência de falsos positivos no valor de \overline{R} (YU et al., 2020, 2021). Como as taxas de evaporação tendem a ser menos variáveis do que a precipitação, \vec{E} foi calculado como o valor médio para todas as horas que atendem aos critérios de limite ($P_g \ge 1,5$ mm com resolução de 3 horas) durante o período de estudo. Por fim, GIM foi aplicado diariamente, assumindo um único evento por dia chuvoso.

Para fins de comparação, os valores de I estimados pelo GIM foram confrontados com os produtos globais de interceptação, PMLv2 e GLEAMv3.7a. A avaliação I considerou tanto a interceptação total ao longo do período de estudo de cada experimento quanto a I diária. A I diária foi estimada com base na ocorrência de dias chuvosos dada pelo MSWEP. Além disso, o GIM foi avaliado usando MSWEP, IMERG e GLDAS-2.1. MSWEP e GLDAS são os produtos de precipitação usados por GLEAM e GLDAS, respectivamente. Esse alinhamento das fontes de dados permite uma análise do desempenho dos modelos de perda por interceptação, ao mesmo tempo em que considera a influência potencial dos dados de precipitação. Além disso, possibilita a avaliação do desempenho do GIM utilizando diversas fontes de dados de precipitação. Para mitigar erros resultantes de possíveis discrepâncias nas estimativas de precipitação, os locais onde a precipitação estimada foi mais que o dobro ou menos da metade do total observado para o período de estudo de cada experimento foram excluídos desta análise.

Todos os produtos de sensoriamento usados durante a pesquisa estão descritos na Tabela 7.

Produto	Bandas /variáveis	Cobertura	Resolução	Resolução
		temporal	temporal	espacial
Landsat 5 / TM	Red, Blue, Green, NIR, SWIR1 e SWIR2	Mar/1984 -	16 dias	30 m
		Mai/2012		
Landsat 7 /	Red, Blue, Green, NIR, SWIR1 e SWIR2	Mai/1999 -	16 dias	30 m
ETM+		Atualmente		
Landsat 8 /	Red, Blue, Green, NIR, SWIR1 e SWIR2	Mar/2013 -	16 dias	30 m
OLI		Atualmente		
MOD44Bv6	VCF	Mar/2000 -	1 ano	0,25 Km
		Mar/2020		

MCD15A3Hv6	fPAR, LAI	Jul/2002 -	4 dias	0,5 Km
		Atualmente		
ERA5-Land	Radiação solar e termal líquida, velocidade zonal	1981 –	1 hora	0,1°
	e meridional do vento, temperatura do ar e do	Atualmente		
	ponto de orvalho a 2 metros			
MSWEP v2.8	Precipitação	1979 –	3 horas	0,1°
		Atualmente		
IMERG	Precipitação	Jun/2000 -	30 min	0,1°
		Atualmente		
GLDAS-2.1	Precipitação	Jan/2000 -	3 horas	0,25°
		Atualmente		
PMLv2	Perda por interceptação	Fev/2000 -	8 dias	0,5 Km
		Atualmente		
GLEAM v3.7a	Perda por interceptação	Jan/1980	1 dia	0,25°
		Dec/2022		

Nota: *Red, Blue* e *Green* são as bandas do Vermelho, Azul e Verde, respectivamente; *NIR*: Banda do Infravermelho Próximo; *SWIR*: Banda Infravermelha de Ondas Curtas; VCF é a banda *Vegetation Continuous Fields* do MODIS; fPAR é a fração de radiação fotossinteticamente ativa absorvida; LAI é o Índice de Área Foliar (IAF). Fonte: Elaborado pela autora (2023).

4 RESULTADOS E DISCUSSÃO

Com o objetivo de estimar a interceptação regional através de produtos de sensoriamento remoto e avaliar seu desempenho com o acréscimo dos modelos empíricos dos parâmetros de vegetação, esta seção apresenta os resultados obtidos, divididos em cinco partes: (i) caracterização da base de dados de estudos de campo, (ii) avaliação dos modelos de regressão linear, (iii) avaliação do desempenho dos modelos globais de interceptação nas áreas de estudo, e, por fim, (iv) análise do desempenho do GIM utilizando diferentes produtos de precipitação.

4.1 CARACTERIZAÇÃO DA BASE DE DADOS DE ESTUDOS DE CAMPO

A seleção dos artigos que compõem a base de dados deste estudo foi realizada a partir da triagem e classificação de 122 artigos com critérios específicos, que incluíram a presença de informações relevantes, como localização geográfica, período de estudo e imagens de satélite durante o período de estudo. Alguns desses artigos continham vários locais experimentais, resultando em um total de 131 áreas de estudo. Esses artigos forneceram informações valiosas sobre a perda por interceptação, morfologia da vegetação e características climáticas da região em estudo. Os artigos com melhor classificação (A, B e C) foram selecionados para uma análise mais detalhada e suas principais informações foram tabulados, que inclui dados sobre precipitação total, taxas médias de precipitação e de evaporação, capacidade de armazenamento da copa e troncos, fração de cobertura vegetal e tipo de vegetação. Esses dados foram relevantes para prosseguimento da pesquisa e a organização dessas informações facilitou o acesso e a análise dos resultados. Todavia, é importante enfatizar que todos os artigos encontrados durante a revisão bibliográfica estão disponíveis nos Apêndices A e B, o que garante a transparência e a reprodução dos estudos realizados e fomenta investigações futuras em áreas correlatas. As áreas experimentais estão distribuídas em diversos países e climas distintos. Para ilustrar a distribuição geográfica, foi elaborada a Figura 3. A diversidade dos locais de amostragem é importante para garantir a representatividade nos modelos empíricos e sua aplicabilidade em diferentes contextos geográficos.

Figura 3 - Distribuição geográfica dos locais de estudo e tipos de cobertura vegetal.

Fonte: Adaptado de Oliveira et al. ([s. d.], submetido)

Devido à diversidade e complexidade da vegetação, as diferentes coberturas vegetais foram classificadas em cinco tipos distintos: coníferas com 26 áreas experimentais, caducifólias com 25 áreas experimentais, perenes com 29 áreas experimentais, arbustos com 6 áreas experimentais e eucaliptos com 1 área experimental (Tabela 8). A classificação foi baseada nos tipos de vegetação documentados nos artigos, evitando depender de uma classificação global de outra fonte externa. Devido ao baixo número de experimentos, a categoria eucalipto foi descartada, restando um total de 86 experimentos para análise. Este sistema de classificação permitiu uma análise mais detalhada do impacto do tipo de vegetação e sua relação com a perda de interceptação.

Tabela 8 – Número de áreas experimentais por tipo de vegetação e por classe.

Vegetação	Α	В	С	D	Е
Coníferas	15 (13)	6 (6)	5 (5)	14 (11)	2 (2)
Caducifólias	11 (11)	4 (4)	10 (8)	7 (4)	-
Perenes	12 (11)	11 (11)	6 (6)	12 (10)	4 (3)
Arbustos	2 (2)	4 (4)	-	-	-
Eucaliptos	1 (1)	-	-	4 (1)	1 (1)

Nota: Entre parênteses, o número de áreas em que a perda de interceptação foi explicitamente mencionada nos artigos (não apenas representada graficamente). Categoria A: localização precisa. Categoria B: localizações menos precisas (até precisão de arco-minuto) dentro de florestas homogêneas e longe de perturbações. Categoria C: localizações imprecisas em vegetação heterogênea. Categoria D: excluída devido à baixa proporção de vegetação ou localização muito imprecisa. Categoria E: excluída por falta de imagens de satélite.

Fonte: Adaptado de Oliveira et al. ([s. d.], submetido)

Para aprimorar a precisão das estimativas, a categoria de vegetação perene foi dividida em dois subtipos: floresta perene tropical e floresta perene não tropical, com 11 e 19 amostras, respectivamente. A separação entre as categorias de vegetação tropical e não tropical na análise dos dados é justificada por não ter sido encontrado um adequado modelo linear para S_v ao analisar a vegetação perene como um todo. Uma hipótese é que diversidade de espécies na categoria floresta perene não tropical seja menor em comparação a floresta perene tropical, apresentando morfologia mais homogênea.

De forma geral, observa-se que as coníferas e a vegetação perene apresentam S_v maior do que os demais tipos de vegetação, embora haja variações na capacidade armazenada, como evidenciado pela análise da variância e desvio padrão (Figura 4). Os demais tipos de vegetação, como as caducifólias e as arbustivas, apresentam S_v menor. Essa variabilidade nos valores de S_v coletados em campo pode ser explicada, conforme destacado por Zhong et al. (2022), pelas características morfológicas da vegetação e pelas variáveis meteorológicas que influenciam esse parâmetro. As caducifólias, por exemplo, perdem suas folhas durante o inverno, o que reduz temporariamente sua capacidade de armazenamento e justifica a maior variação de *c*. As arbustivas, por sua vez, podem apresentar um menor valor de S_v e *c* devido à sua estrutura menos densa. Em contrapartida, as perenes tendem a apresentar uma cobertura mais densa, o que resulta em valores de *c* próximos a 1.

Figura 4 – Distribuição dos valores de c e S_v por tipo de vegetação. Considerando todas as classes (A a E)

Nota: Cada gráfico de violino apresenta a distribuição dos valores de $c \in S_v$ para os diferentes tipos de vegetação considerando todas as classes de estudo (acima) e restrito apenas às classes A a C (abaixo). Adicionalmente, nas representações, foram incluídas métricas estatísticas, como média, variância (σ^2) e desvio padrão (σ).

Fonte: Elaborado pela autora (2023).

4.2 MODELOS DE REGRESSÃO LINEAR

Mo

4.2.1 Modelos de regressão linear desenvolvidos

Os modelos de regressão linear múltipla para estimativa de c incorporaram vários índices espectrais chave, incluindo NDVI, EVI, NDWI, MNDWI e albedo (Tabela 9). Essa combinação de índices espectrais sugere que, apesar de serem modelos empíricos, eles incorporam variáveis sensíveis a diferentes aspectos da vegetação, incluindo estresse hídrico no solo e disponibilidade para plantas, biomassa senescente e detecção de material de vegetação verde (ANCHANG et al., 2020). A variável mais utilizada em todos os modelos propostos foi a banda Red. Além disso, o albedo e a banda SWIR também foram frequentemente selecionados como variáveis independentes, destacando sua potencial utilidade na estimativa de c. No geral, os modelos preditivos para c exibiram resultados promissores, conforme evidenciado pelos altos valores ajustados de R^2 para o modelo proposto para cada classe de vegetação (Tabela 9).

Tabela 9 – Modelos de regressão linear para <i>c</i> por tipo de vegetação.	
delos de regressão linear para <i>c</i> R ²	R ² adj

Coníferas (33 observações)		
$0,1935 + 1,8296 \cdot NIR_{max}$	0,298	0,276
$0,0898 + 2,64658 \cdot Albedo_{max} - 0,73816 \cdot MNDWI_{P75}$	0,464	0,428
0,2599 – 26,1558 · Red _{min} + 19,6567 · Red _{P25} + 3,8254 · Albedo _{P75}	0,611	0,571

$0, 1748 + 23, 4406 \cdot Blue_{min} - 42, 2224 \cdot Red_{min} + 19, 5264 \cdot Red_{P25} + 3, 9957 \cdot Albedo_{P75}$	0,655	0,606	
$2,8258 + 25,2832 \cdot Blue_{min} - 45,861 \cdot Red_{min} - 2,7955 \cdot NDVI_{max} + 1,6141$ $\cdot NIR_{max} + 6,1743 \cdot SWIR 2_{P25}$	0,694	0,637	
Caducifólias (28 observações)			
$-0,2245 + 1,1345 \cdot NDVI_{max}$	0,590	0,574	
$-0,5546 + 2,8609 \cdot Albedo_{min} + 1,2108 \cdot NDVI_{max}$	0,745	0,725	
$0,05208 + 3,83163 \cdot NDWI_{min} + 3,59606 \cdot Albedo_{min} + 3,93567 \cdot NDVI_{max}$	0,878	0,862	
$0,1894 + 3,8884 \cdot NDWI_{min} + 4,0976 \cdot Albedo_{min} + 3,9905 \cdot NDVI_{max} - 0,9932 \cdot Albedo_{max}$	0,903	0,886	
$0,1089 + 3,6433 \cdot Albedo_{md} + 3,8648 \cdot NDWI_{min} + 3,8706 \cdot Albedo_{min} + 4,1034 \\ \cdot NDVI_{max} - 4,4088 \cdot Albedo_{P75}$	0,922	0,904	
Floresta tropical perene (43 observações)			
$1,1602 + 0,6543 \cdot MNDWI_{P75}$	0,170	0,149	
$0,84237 + 2,51246 \cdot Albedo_{max} - 9,12049 \cdot SWIR2_{P25}$	0,423	0,394	
$0,6509 + 0,46521 \cdot EVI_{min} + 3,17804 \cdot Albedo_{max} - 11,50976 \cdot SWIR2_{P25}$	0,555	0,521	
$0,1469 - 1,0629 \cdot MNDWI_{min} + 14,0401 \cdot Blue_{min} + 2,6631 \cdot Albedo_{max} - 12,9645 \cdot SWIR2_{P25}$	0,650	0,613	
$-0,06463 + 5,39672 \cdot Red_{md} - 1,3938 \cdot MNDWI_{min} + 14,16202 \cdot Blue_{min} + 1,96372 \cdot Albedo_{max} - 13,77618 \cdot SWIR2_{P25}$	0,728	0,691	
Floresta não tropical perene (26 observações)			
$1,17759 - 1,81917 \cdot SWIR1_{max}$	0,546	0,527	
$2,7912 - 1,6357 \cdot NDVI_{max} - 3,2227 \cdot SWIR1_{max}$	0,737	0,714	
$3,3756 + 3,2696 \cdot MNDWI_{min} - 27,7172 \cdot Green_{P25} + 8,5524 \cdot SWIR2_{P25}$	0,825	0,801	
$4,6512 + 5,3628 \cdot MNDWI_{P25} - 35,1597 \cdot Red_{P25} + 21,5759 \cdot SWIR2_{P25} - 7,2233 \cdot Albedo_{P75}$	0,858	0,831	
$\begin{array}{c} 0,1105-6,7703 \cdot NIR_{md} + 4,6668 \cdot MNDWI_{min} - 4,8855 \cdot NDWI_{min} + 2,1741 \\ \cdot EVI_{P25} + 11,3031 \cdot SWIR2_{P25} \end{array}$	0,902	0,877	
Arbustos (11 observações)			
$1,506 - 4,955 \cdot Albedo_{md}$	0,254	0,171	
$0,9704 + 9,7171 \cdot Red_{min} - 3,9038 \cdot SWIR1_{min}$	0,471	0,339	
$1,642 - 13,1735 \cdot Albedo_{md} - 1,978 \cdot EVI_{min} + 6,6729 \cdot NIR_{P25}$	0,590	0,414	
$\begin{array}{l} 1,7931-10,8457 \cdot Albedo_{md}-2,5365 \cdot EVI_{min}+7,7667 \cdot NIR_{P25}-3,881\\ \cdot Albedo_{P75}\end{array}$	0,627	0,378	
$\begin{array}{c} 2,141-17,5065 \cdot \textit{Green}_{md} + 18,1891 \cdot \textit{Blue}_{min} - 2,737 \cdot \textit{SWIR1}_{min} + 1,2999 \\ & \cdot \textit{Albedo}_{max} - 0,9812 \cdot \textit{EVI}_{P75} \end{array}$	0,638	0,275	

Nota: *EVI*: Índice de Vegetação Melhorado; *MNDWI*: Índice de Água de Diferença Normalizada Modificado; *NIR*: Banda do Infravermelho Próximo; *NDVI*: Índice de Vegetação por Diferença Normalizada; *NDWI*: Índice de Água por Diferença Normalizada; *SWIR*: Banda Infravermelha de Ondas Curtas; *max*: valores máximos; *md*: valores medianos; min: valores mínimos; *mn*: valores médios; *P25*: valores do percentil 25; *P75*: valores do percentil 75; *R*²: coeficiente de determinação; *R*² *adj*: coeficiente de determinação ajustado. Em negrito, os modelos propostos. Fonte: Adaptado de Oliveira et al. ([s. d.], submetido)

50

Em termos de capacidade de armazenamento da vegetação (S_{ν}), os modelos lineares propostos mostraram-se correlacionados principalmente com a banda SWIR, banda NIR e NDWI. As medidas de qualidade de ajuste, como R^2 e R^2 ajustado, foram relativamente altas, indicando que fornecem um bom ajuste aos dados (Tabela 10).

Tabela 10 – Modelos de regressão linear para S_{ν} por tipo de vegetação.

Modelos de regressão linear para S_v	\mathbf{R}^2	R ² adj
Coníferas (37 observações)		
$-0,3478 + 4,435 \cdot EV12_{max}$	0,172	0,148
$1,5178 - 27,1633 \cdot NIR_{min} + 22,9354 \cdot NIR_{P25}$	0,425	0,391
$0,4535 - 23,3026 \cdot NIR_{min} + 11,2732 \cdot EVI_{P25} + 33,005 \cdot SWIR2_{P25}$	0,544	0,502
$1,0321 + 46,165 \cdot SWIR2_{mn} - 24,6823 \cdot NIR_{min} - 11,757 \cdot SWIR1_{max} + 12,5335$	0,600	0,550
$\cdot EVI_{P25}$		
$\begin{array}{l} 0,8616 + 43,0618 \cdot SWIR2_{mn} - 23,8326 \cdot NIR_{min} - 18,0584 \cdot SWIR1_{max} + 10,9426 \\ \cdot Albedo_{max} + 11,1324 \cdot EVI_{P25} \end{array}$	0,644	0,587
Caducifólias (34 observações)		
$-0,5508 + 10,9856 \cdot NIR_{min}$	0,374	0,355
$-2,5356 + 11,3084 \cdot NIR_{md} - 2,3163 \cdot NDWI_{max}$	0,482	0,449
$-3,4996 + 10,2627 \cdot NIR_{md} + 19,8495 \cdot Green_{min} - 3,3300 \cdot NDWI_{max}$	0,537	0,491
$-0,5265 + 12,5592 \cdot NIR_{md} + 5,52 \cdot SWIR2_{mn} + 6,1076 \cdot MNDWI_{min} - 4,1648$	0,581	0,523
· NDWI _{max}		
$\begin{array}{l} 4,065 + 12,434 \cdot NIR_{md} + 10,45 \cdot MNDWI_{min} - 2,418 \cdot NDWI_{max} - 70,367 \cdot Blue_{P25} \\ + 18,551 \cdot SWIR2_{P25} \end{array}$	0,636	0,571
Floresta tropical perene (43 observações)		
$1,7477 - 13,2858 \cdot SWIR2_{P25}$	0,314	0,298
$1,8961 - 34,5569 \cdot Green_{mn} + 24,426 \cdot Blue_{P75}$	0,481	0,455
$0,5682 - 25,2269 \cdot SWIR2_{P25} - 2,3415 \cdot MNDWI_{P75} + 17,5538 \cdot Blue_{P75}$	0,555	0,520
$-0,3434 + 1,2254 \cdot NDVI_{P25} - 23,9967 \cdot SWIR2_{P25} - 1,9891 \cdot MNDWI_{P75} + 20,5946$ $\cdot Blue_{P75}$	0,590	0,547
$-3,792 + 8,905 \cdot SWIR1_{md} + 6,681 \cdot NDVI_{P25} - 29,569 \cdot SWIR2_{P25} + 32,237$ $\cdot Red_{P25} - 4.26 \cdot NIR_{P25}$	0,618	0,567
Floresta não tropical perene (26 observações)		
$0.6264 + 4.1171 \cdot NDVI_{min}$	0.647	0.632
$4.7475 + 6.1436 \cdot MNDWI_{min} + 3.2882 \cdot NDVI_{min}$	0.714	0.689
$6.146 + 7.368 \cdot MNDWI_{min} + 6.454 \cdot NDVI_{min} + 4.516 \cdot NDWI_{max}$	0.741	0.705
$2,196 + 284,1002 \cdot Blue_{min} - 238,1292 \cdot Blue_{P25} - 175,4697 \cdot Blue_{P75} + 139,7248$	0,790	0,750
$-1,3485 - 128,695 \cdot Blue_{md} + 91,5845 \cdot Blue_{mn} + 8,7338 \cdot NDVI_{min} - 56,7285 \cdot NIR_{min} + 120,6621 \cdot Albedo_{min}$	0,855	0,819
Arbustos (13 observações)		
$2,5302 - 2,682 \cdot NDVI_{max}$	0,835	0,820
$2,9706 - 1,6822 \cdot EVI_{min} + 3,1294 \cdot NDWI_{min}$	0,907	0,888
$2,8949 - 4,5899 \cdot Albedo_{min} + 4,5077 \cdot EVI2_{max} - 5,6271 \cdot NDVI_{max}$	0,962	0,950
$2,8147 - 26,9299 \cdot Blue_{md} - 1,8512 \cdot NDVI_{min} + 34,9614 \cdot Green_{P25} - 15,5984$ $\cdot Albedo_{page}$	0,979	0,969
$6,1562 + 2,9521 \cdot MNDWI_{md} - 30,7636 \cdot Blue_{md} + 2,4084 \cdot EVI_{max} - 2,9895 \cdot NDVI_{max} - 2,4052 \cdot NDVI_{P75}$	0,984	0,972

Nota: *EVI*: Índice de Vegetação Melhorado; *MNDWI*: Índice de Água de Diferença Normalizada Modificado; *NIR*: Banda do Infravermelho Próximo; *NDVI*: Índice de Vegetação por Diferença Normalizada; *NDWI*: Índice de Água por Diferença Normalizada; *SWIR*: Banda Infravermelha de Ondas Curtas; *max*: valores máximos; *md*: valores medianos; min: valores mínimos; *mn*: valores médios; *P25*: valores do percentil 25; *P75*: valores do percentil 75; *R*²: coeficiente de determinação; *R*² *adj*: coeficiente de determinação ajustado. Em negrito, os modelos propostos. Fonte: Adaptado de Oliveira et al. ([s. d.], submetido)

A escolha das variáveis e o método de parametrização são fatores importantes que influenciam no desempenho do modelo empírico, e a abordagem utilizada neste estudo pode contribuir para um melhor entendimento da relação entre as variáveis de sensoriamento remoto e os parâmetros de vegetação. Essa abordagem multivariável é semelhante à empregada por Barati et al. (2011). Porém, enquanto o modelo de Barati (2011) tenha sido bem-sucedido em estimar c, seu estudo se limitou em áreas desérticas. Dentro dos modelos de regressão linear, as bandas Red, NIR e SWIR foram as mais utilizadas para estimar os parâmetros da vegetação. Embora a associação entre uma variável de resposta e seus preditores possa não ser causal pode ser simplesmente o resultado de uma correlação espúria – a presença dessas três bandas nos modelos é consistente com o comportamento esperado. A luz dentro da banda NIR é altamente refletida pela vegetação saudável (ZAHIR et al., 2022) e está incluída em índices espectrais como NDVI, NDWI e EVI. A banda SWIR é sensível a variações no teor de água na vegetação e no solo (FORMAGGIO; SANCHES, 2017). A luz dentro da banda Red é fortemente absorvida pela clorofila e, portanto, é um bom indicador da atividade fotossintética (JACKSON; HUETE, 1991). Todas essas bandas espectrais foram identificadas como essenciais para mapear a cobertura do solo (ANDRADE et al., 2021) e avaliar a saúde da vegetação (KUREEL et al., 2022), portanto, é natural que também sejam preditores relevantes na modelagem $c \in S_{\nu}$.

As estatísticas de sinal (positivo ou negativo) e ordem das séries temporais (mínimo, máximo, P25, P75, média ou mediana) dessas variáveis usadas nas regressões lineares dependem do parâmetro e do tipo de vegetação que está sendo modelado. O uso de estatísticas de diferentes ordens nos modelos permite capturar a variabilidade dos padrões de vegetação. Por exemplo, o uso frequente de valores anuais mínimos e máximos de bandas espectrais e índices pode estar relacionado à sua capacidade de capturar eventos extremos e dinâmica da vegetação (GRAY; SONG, 2012; HOTT et al., 2019), como estresse da vegetação ou mudanças fenológicas que afetam $c \in S_v$.

4.2.2 Avaliação dos modelos de regressão linear propostos

A combinação de vários índices de vegetação permite que o modelo empírico capture uma ampla gama de informações sobre a vegetação, o que pode ser útil para estudos ambientais. A abordagem de combinar diferentes variáveis para estimar os parâmetros de vegetação é diferente da usual, na qual há prevalência pela utilização de NDVI ou IAF (LIANG; WANG, 2020; PEREIRA et al., 2020; VON HOYNINGEN-HUENE, 1981; ZHONG et al., 2022). Dessa forma, é fundamental verificar se os modelos desenvolvidos neste estudo apresentam desempenho comparável ou superior aos modelos disponíveis na literatura.

Os modelos lineares propostos para *c* demonstram maior precisão em comparação com os modelos pré-existentes testados, tanto ao avaliar os valores anuais (Figura 5) quanto os valores médios durante os períodos de estudo dos experimentos (Figura 6), como evidenciado pelo seu desempenho consistentemente elevado nas várias métricas de avaliação utilizadas.

Figura 5 – Comparação entre *c* observado e estimado a partir de (a) modelo de Gutman e Ignatov (1997); (b) modelo de Zhong et al. (2022); e (c) os modelos de regressão linear propostos para os valores anuais.

Nota: O código de cores representa o tipo de vegetação dominante de cada local de estudo. A linha tracejada representa a linha 1:1. As métricas estatísticas para os dados apresentados no gráfico correspondente acima: número total de observações (*N*), coeficiente de correlação de Pearson (*r*), coeficiente de eficiência de Nash–Sutcliffe (*NSE*), raiz do erro quadrático médio (*RMSE*) e coeficiente de correlação de concordância (ρ_c).

Fonte: Adaptado de Oliveira et al. ([s. d.], submetido)

Figura 6 – Comparação entre *c* observado e estimado a partir de (a) modelo de van Dijk e Bruijnzeel (2001a); (b) modelo de Gutman e Ignatov (1997); (c) modelo de Zhong et al. (2022); e (d) modelos de regressão linear propostos para os valores médios do período de estudo.

Nota: O código de cores representa o tipo de vegetação dominante de cada local de estudo. A linha tracejada representa a linha 1:1. As métricas estatísticas para os dados apresentados no gráfico correspondente acima: número total de observações (*N*), coeficiente de correlação de Pearson (*r*), coeficiente de eficiência de Nash–Sutcliffe (*NSE*), raiz do erro quadrático médio (*RMSE*) e coeficiente de correlação de concordância (ρ_c).

Fonte: Elaborado pela autora (2023).

Os modelos de regressão linear não só mostram uma melhoria acentuada em termos de poder explicativo, como refletido nos altos valores de r, que mede a intensidade da relação linear entre os valores modelados e observados, mas também apresentam um melhor *NSE*, que avalia o grau com que o modelo captura a variabilidade nos dados. Além disso, as regressões lineares atingiram um alto ρ_c , mostrando que os pares de pontos (observados, modelados) estão perto da linha 1:1, e um baixo valor de *RMSE*, o que reflete um pequeno desvio entre os valores modelados e observados.

Em contraste, as estimativas de *c* geradas pelo modelo de Gutman e Ignatov mostram um desvio significativo dos valores reais, com alta variabilidade e quase nenhuma tendência, independentemente do verdadeiro valor de *c* (Figura 5a e Figura 6b). Isso sugere que, mesmo quando o *c* observado é alto, próximo de 1, o modelo falha em capturar esse valor com precisão, resultando em estimativas baixas não confiáveis. Para o modelo Zhong (Figura 5b e Figura 6c), devido à sua dependência dos dados MODIS (VCF e fPAR), o número de observações é cerca de metade dos outros modelos. Seus resultados também apresentam subestimadas de *c*. Para o modelo de van Dijk e Bruijnzeel, o reduzido número de observações se dá pela dependência do IAF, o qual foi utilizado valores reportados pelos artigos.

A comparação entre o S_v observado e o modelado usando o modelo de van Dijk e Bruijnzeel (2001a) adaptado por Zhong et al. (2022) (vD-model) com o produto MODIS LAI (MCD12Q1v6.1) e os valores de IAF relatados pelos artigos originais são mostrados na Figura 7a,b. Como os dados do MODIS LAI estão disponíveis apenas a partir de 2002 e nem todos os artigos relatam o IAF do dossel da planta, o número de observações varia em cada um dos gráficos. Como pode ser visto no gráfico de dispersão (Figura 7c), os modelos de regressão tiveram um bom desempenho na estimativa de S_v para a maioria dos tipos de vegetação, com uma forte correlação positiva entre os valores observados e estimados.

Figura 7 – Comparação entre S_v observada e estimada usando (a) modelo vD-B com MODIS LAI, (b) modelo vD-B com LAI medido em campo e (c) os modelos de regressão linear propostos.

Nota: O código de cores indica o tipo de vegetação dominante em cada local. A linha tracejada representa a linha 1:1. RMSE está em mm.

Fonte: Adaptado de Oliveira et al. ([s. d.], submetido)

Os valores observados de S_{ν} também foram comparados com os modelos preexistentes (Figura 8). Para garantir uma análise mais robusta dos valores médios de S_{ν} , foi utilizado o IAF de campo, evitando assim a dependência do MODIS e, consequentemente, a redução do número de observações. O S_{ν} estimado usando os modelos de regressão linear superou os modelos baseados em IAF considerados neste estudo. Cabe destacar o comportamento do modelo de Wallace e McJannet (2008) (Figura 8e), desenvolvido para vegetação perene. Se não fosse realizada uma restrição para que o menor valor possível de S_{ν} fosse zero, o modelo apresentaria resultados negativos de até -4,5 mm.

Figura 8 – Comparação entre S_{ν} observado e estimado a partir dos modelos preexistentes e os modelos de regressão linear propostos para os valores médios do período de estudo.

Nota: Comparação entre S_{ν} observado e estimado para modelo de (a) von Hoyningen-Huene (1981); (b) Leuning, Kriedermann e McMurtrie (1991); (c) Menzel (1996); (d) Gómez, Giráldez e Fereres (2001); (e) Wallace e McJannet (2008); (f) Galdos et al. (2012); (g) van Dijk e Bruijnzeel (2001a); (h) regressão linear propostos. O código de cores indica o tipo de vegetação dominante em cada local. A linha tracejada representa a linha 1:1. RMSE está em mm. Fonte: Elaborado pela autora (2023).

O número limitado de áreas experimentais nas classes A e B, que foram distribuídas de acordo com o tipo de vegetação predominante (conforme Tabela 8), inviabilizou a divisão dos dados em dois subconjuntos distintos. No qual um subconjunto serviria ao propósito de modelar os modelos de regressão linear e outro para avaliá-los. Para superar esse problema, realizou-se a análise de *bootstrap*. Os resultados obtidos na reamostragem utilizando *bootstrap* e na análise do intervalo de confiança mostraram-se consistentes com os valores observados durante o processo de calibração (Tabela 11).

Vegetação	Fração de cobertura vegetal		Capacidade de armazenamento da vegetação		
	\mathbb{R}^2	R² adj	\mathbb{R}^2	R² adj	
Coníferas	0,567 [0,357; 0,793]	0,508 [0,268; 0,764]	0,625 [0,356; 0,820]	0,579 [0,278; 0,798]	
Caducifólias	0,880 [0,722; 0,965]	0,866 [0,687; 0,960]	0,619 [0,402; 0,802]	0,567 [0,319; 0,775]	
Floresta tropical	0,688 [0,381; 0,788]	0,571 [0,205; 0,739]	0,526 [0,318; 0,735]	0,441 [0,197; 0,688]	
perene					
Floresta não tropical	0,862 [0,710; 0,954]	0,843 [0,670; 0,948]	0,776 [0,587; 0,915]	0,746 [0,531; 0,903]	
perene					
Arbustos	0,515 [0,118; 0,922]	0,394 [0,102; 0,902]	0,883 [0,483; 0,980]	0,860 [0,380; 0,976]	

Tabela 11 – Análise de *bootstrap*.

Nota: entre colchetes estão as estimativas de R^2 e R^2 ajustado com intervalos de confiança de 95%

Fonte: Adaptado de Oliveira et al. ([s. d.], submetido)

4.3 AVALIAÇÃO DO DESEMPENHO DOS MODELOS GLOBAIS DE INTERCEPTAÇÃO NAS ÁREAS DE ESTUDO

Os parâmetros de vegetação estimados pelas regressões lineares foram então usados para calcular a perda de interceptação usando o modelo de Gash esparso, dando origem ao GIM. Os valores estimados de *I* foram comparados com os valores observados relatados pelos artigos originais e com dois produtos globais amplamente utilizados, PMLv2 e GLEAMv3.7a (Figura 9). A comparação revelou que os modelos lineares propostos, quando combinados com dados de precipitação MSWEPv2.8, forneceram estimativas precisas de perda de interceptação. Essa precisão é particularmente notável ao considerar que os modelos GIM e GLEAM v3.7a dependem do MSWEP como entrada de precipitação, ressaltando a importância da metodologia

proposta para obter estimativas confiáveis. Esses resultados são especialmente relevantes ao se estudar áreas na quais os parâmetros S_v e *c* não estão facilmente acessíveis.

Além disso, os resultados obtidos com os dados das áreas experimentais classificadas como C corroboram os resultados obtidos com as classes A e B (Figura 9, símbolos sólidos). Embora os 13 experimentos classificados como C tivessem uma localização imprecisa em locais de vegetação heterogênea, eles foram usados como um conjunto de dados independente adicional para verificar a qualidade da modelagem *I*. Os resultados foram semelhantes aos obtidos com os dados das classes A e B, confirmando o melhor desempenho da metodologia proposta do que os outros dois modelos de sensoriamento remoto utilizados (Figura 9).

Figura 9 – Comparação da perda de interceptação estimada e observada usando dados (a, b) GIM, (c, d) PMLv2 e (e, f) GLEAM v3.7a

Nota: O código de cores indica o produto de perda de interceptação usado. As linhas contínuas representam as linhas de regressão e as linhas tracejadas mostram a linha 1:1. Os símbolos vazios denotam as áreas de classe A ou B, enquanto os símbolos sólidos representam as áreas experimentais classificadas como C. Fonte: Adaptado de Oliveira et al. ([s. d.], submetido)

O modelo esparso de Gash é um modelo analítico amplamente utilizado para estimar a interceptação de chuva pela vegetação. No entanto, para que esse modelo seja acurado, é importante que os parâmetros de entrada sejam precisos. Por isso, explorou-se a utilização de produtos de sensoriamento remoto na estimativa da perda por interceptação global e regional. O desempenho da estimativa, utilizando modelos de regressão linear dos parâmetros de vegetação, foi avaliado e, com o objetivo de verificar a influência de diferentes produtos de precipitação nos resultados obtidos, foram testados três produtos diferentes (IMERG, GLDAS e MSWEP). Vale destacar que, para essa análise, os demais parâmetros foram mantidos constantes, sendo alterados apenas os produtos de precipitação.

Os resultados, limitados ao período para o qual os dados IMERG e GLDAS estavam disponíveis, mostram que a precipitação total medida nos locais experimentais é geralmente bem estimada pelos dados destes três produtos (Figura 10). Porém, o IMERG e o GLDAS apresentaram resultados mais precisos em comparação ao MSWEP, que obteve uma performance um pouco inferior em regiões com altas estimativas de perda de interceptação em campo, como florestas perenes tropicais no Brasil, Indonésia e Malásia, ou florestas decíduas no Japão e nos Países Baixos. Essa performance inferior pode ser atribuída às limitações na precisão dos dados de entrada para o modelo. A resolução espacial dos dados de sensoriamento remoto utilizados para estimar a interceptação podem afetar a precisão do modelo, especialmente em áreas com uma grande variação na cobertura vegetal ou nas variáveis climáticas.

A capacidade de armazenamento, total precipitado e duração da chuva são os fatores mais sensíveis detectados no modelo de interceptação esparso de Gash (LINHOSS; SIEGERT, 2016). Logo, para o desenvolvimento de modelos de interceptação precisos e eficientes, é importante levar em consideração não apenas os diferentes parâmetros do modelo e sua sensibilidade, mas também a resolução espacial dos dados utilizados para estimar a interceptação. Portanto, é necessário a escolha adequada do produto de precipitação e a avaliação da resolução espacial dos produtos utilizados para cada situação a fim de garantir a precisão das estimativas de interceptação.

Figura 10 – Comparação da precipitação total observada e estimada (a, c, e) e perda de interceptação (b, d, f) usando três conjuntos de dados de precipitação diferentes

Nota: O código de cores indica o produto de precipitação usado. As linhas contínuas representam as linhas de regressão e as linhas tracejadas a linha 1:1. Os símbolos vazios indicam os sites que foram classificados como categoria A ou B, enquanto os símbolos sólidos representam os sites classificados como C. RMSE está em mm. Fonte: Adaptado de Oliveira et al. ([s. d.], submetido)

4.4 LIMITAÇÕES E DESAFIOS NA ESTIMATIVA DA INTERCEPTAÇÃO DA PRECIPITAÇÃO UTILIZANDO DADOS DE SENSORIAMENTO REMOTO

Apesar dos resultados promissores obtidos com essa metodologia, é importante reconhecer a existência de incertezas associadas a ela, as quais envolvem limitações na resolução espacial, qualidade dos dados e parametrização. Uma das principais fontes de incerteza está relacionada à precisão dos dados de precipitação utilizados como entrada no modelo. Embora o conjunto de dados MSWEP empregado neste estudo seja considerado de alta qualidade, ainda é possível que ele contenha erros de medição e viés, podendo resultar em imprecisões nas estimativas de *I*. Além disso, é essencial ter cautela ao aplicar o GIM em áreas com padrões de precipitação complexos, onde a precisão dos produtos de precipitação pode ser comprometida. Essa problemática possivelmente será observada em regiões caracterizadas por alta variabilidade e heterogeneidade espacial na distribuição da precipitação.

A limitação da resolução espacial dos produtos de precipitação pode resultar em uma suposição equivocada de que a chuva é distribuída uniformemente por toda a área do pixel, ignorando a possibilidade de que a precipitação esteja concentrada em apenas parte do pixel. As discrepâncias entre o *I* observado e estimado foram particularmente significativas em locais onde houve diferenças na precipitação total estimada ou na taxa de precipitação média em relação aos valores obtidos em campo. Ademais, os diferentes resultados obtidos ao utilizar os produtos IMERG, GLEAM ou MSWEP (Figura 10) ressaltam que a utilização de diferentes conjuntos de dados de precipitação pode levar a incertezas substanciais nas estimativas de perda de interceptação. Cada conjunto de dados possui suas próprias metodologias de coleta e processamento, bem como resoluções espaciais e temporais específicas, o que pode resultar em discrepâncias nos valores de precipitação estimados, como demonstrado por Nashwan et al. (2019) e Andrade et al. (2022).

Além disso, é preciso reconhecer que a precisão das estimativas pode ser afetada por incertezas associadas aos dados de referência usados para ajustar e validar os modelos. A precisão dos pluviômetros usados para medir a precipitação pode ser afetada por fatores como erro induzido pelo vento, evaporação e respingos (HUFFMAN et al., 2019a). Em áreas florestais, a precisão das medições de chuva pode ser afetada pela localização dos pluviômetros, que podem ser colocados no nível do solo na borda da floresta, em uma clareira ou em um mastro acima do dossel. Essa variabilidade na posição dos medidores pode resultar em diferenças na quantidade de chuva coletada, devido à representatividade, turbulência e abrigo proporcionados pelas árvores circundantes (ROBINSON; GRANT; HUDSON, 2004). À

medida que as árvores crescem e se desenvolvem, os pluviômetros que anteriormente estavam bem-posicionados podem se tornar menos eficazes para capturar de forma precisa a distribuição da chuva dentro da floresta.

Adicionalmente, os dados de referência sobre perda de interceptação foram geralmente obtidos usando o método do balanço hídrico, que é propenso a erros devido à dificuldade de medir com precisão a precipitação direta e o escoamento pelos troncos (ELIADES et al., 2022). Isso pode levar a vieses nas estimativas de perda de interceptação, especialmente ao extrapolar os resultados para outras áreas com diferentes coberturas e condições climáticas. Entre os estudos que divergiram, Germer et al. (2006) se destacaram. Durante seu estudo da interceptação em uma floresta amazônica com precipitação acumulada de 1.307 mm, eles obtiveram um valor interceptado de apenas 31 mm ($I/P_g \cong 2,4\%$). Esse resultado contrasta com as observadas em outras florestas tropicais, onde os valores de I/P_g ficaram em torno de 10 a 18% (CUARTAS et al., 2007; DYKES, 1997; GHIMIRE et al., 2017; HOLWERDA et al., 2012; TANI et al., 2003; ZHANG et al., 2019a). O que levanta questões sobre o design do experimento e os fatores subjacentes que os influenciaram.

Em relação à parametrização, apesar de terem sido incluídos a classe C e o método bootstrap para avaliar o desempenho do modelo, existem incertezas inerentes na determinação dos coeficientes do modelo. A estimativa das variáveis foi realizada utilizando dados Landsat, e a presença de nuvens nas imagens pode reduzir o número de observações utilizáveis para estimar os parâmetros da vegetação. Essa limitação pode ser especialmente desafiadora em áreas com frequente cobertura de nuvens ou durante certas estações do ano. Além disso, mudanças na cobertura da superfície, como desmatamento ou alterações no uso do solo, também podem introduzir incertezas no processo de estimativa. Caso ocorram mudanças na vegetação durante o período de estimação, as relações entre os índices espectrais e os parâmetros da vegetação podem ser alteradas, impactando a precisão dos modelos. Portanto, embora os resultados obtidos da pesquisa forneçam informações valiosas sobre o processo de interceptação, as limitações dos métodos usados para obter os dados devem ser levadas em consideração ao analisar os resultados.

5 CONSIDERAÇÕES FINAIS

Tradicionalmente, os métodos baseados em sensoriamento remoto para estimar *I* contam apenas com NDVI e IAF para estimar a fração de cobertura do dossel e o armazenamento de água da vegetação, respectivamente. Com base nos resultados apresentados, pode-se concluir que a incorporação de modelos empíricos de parâmetros de vegetação ao GIM contribui significativamente para melhorar a precisão das estimativas de interceptação da chuva em escalas global e regional. Ou seja, a hipótese de que a inclusão de refletância espectral e índices biofísicos aumentaria a precisão dos parâmetros de vegetação foi validada, resultando em estimativas mais acuradas de *I*. Ao comparar o GIM com os modelos globais de interceptação de PML v2 e GLEAM v3, observou-se que a abordagem apresentou resultados consistentes e melhor desempenho, conforme demonstrado por seus valores de *r*, *NSE*, ρ_c e *RMSE*. Além disso, foi verificado que diferentes produtos de precipitação tiveram impacto nas estimativas da interceptação, o que indica a importância de escolher o produto de precipitação mais adequado para a região de estudo.

Embora tenha havido algumas tentativas de usar dados de sensoriamento remoto para executar o modelo esparso de Gash, a junção de técnicas de sensoriamento remoto e modelos de interceptação ainda está em seus estágios iniciais devido às complexidades dos parâmetros do modelo e à resolução de produtos de sensoriamento remoto. O presente estudo contribui para esta crescente literatura, demonstrando o potencial de modelos lineares para estimar com precisão os parâmetros da vegetação, avançando assim no desenvolvimento de abordagens baseadas em sensoriamento remoto de maior resolução espacial para modelagem de perda de interceptação.

Por fim, futuras pesquisas podem ser realizadas para desenvolver modelos alternativos para os parâmetros de vegetação. Uma abordagem possível poderia ser a aplicação de algoritmos de aprendizado de máquina, como redes neurais ou árvores de decisão, que podem capturar relacionamentos não lineares entre variáveis de entrada e a variável de resposta mais facilmente. Devido à variação espacial das chuvas, outra possiblidade é a utilização do IAF em conjunto com análises de resolução do pixel de precipitação de forma a estabelecer relações que auxiliem na avaliação da heterogeneidade da vegetação em imagens de baixa resolução espacial. Ou seja, essa abordagem poderia explorar correlações entre a densidade da vegetação e os padrões de distribuição da precipitação em uma determinada área.

Ademais, pode ser benéfico explorar o potencial de incorporar outros fatores, como velocidade do vento e altura das árvores. No momento, a velocidade do vento não está

disponível na resolução espacial desejada e os dados de altura da vegetação são limitados. Todavia, é interessante explorar as possibilidades que surgem a partir das pesquisas que utilizam LIDAR para mapeamento da altura das árvores. Com os avanços contínuos em tecnologias de LIDAR, especialmente através do seu uso em satélites, espera-se um aumento na disponibilidade e disseminação global desses dados. Abordar essas restrições de dados e explorar formas inovadoras de integrar esses fatores nos modelos pode ser a chave para futuros avanços na modelagem de interceptação de chuva.

6 REFERÊNCIAS

ALLEN, Richard G.; PEREIRA, Luis S.; RAES, Dirk; SMITH, Martin. Crop evapotranspiration. [s.l: s.n.]. v. 56 DOI: 10.3390/agronomy9100614.

ANCHANG, Julius Y. et al. Toward Operational Mapping of Woody Canopy Cover in TropicalSavannas Using Google Earth Engine. Frontiers in Environmental Science, [S. l.], v. 8, 2020.DOI:10.3389/fenvs.2020.00004.Disponívelem:https://www.frontiersin.org/article/10.3389/fenvs.2020.00004/full.

ANDRADE, João Maria De; CUNHA, John; SILVA, João; RUFINO, Iana; GALVÃO, Carlos. Evaluating single and multi-date Landsat classifications of land-cover in a seasonally dry tropical forest. **Remote Sensing Applications: Society and Environment**, *[S. l.]*, v. 22, 2021. DOI: 10.1016/j.rsase.2021.100515. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S2352938521000513.

ANDRADE, João Maria De; RIBEIRO NETO, Alfredo; BEZERRA, Ulisses Alencar; MORAES, Ana Carolina Cavalcanti; MONTENEGRO, Suzana Maria Gico Lima. A comprehensive assessment of precipitation products: Temporal and spatial analyses over terrestrial biomes in Northeastern Brazil. **Remote Sensing Applications: Society and Environment**, *[S. l.]*, v. 28, n. September, p. 100842, 2022. DOI: 10.1016/j.rsase.2022.100842. Disponível em: https://doi.org/10.1016/j.rsase.2022.100842.

ANDREASEN, Mie; CHRISTIANSEN, Jesper R.; SONNENBORG, Torben O.; STISEN, Simon; LOOMS, Majken C. Seasonal dynamics of canopy interception loss within a deciduous and a coniferous forest. **Hydrological Processes**, *[S. l.]*, v. 37, n. 4, p. 1–16, 2023. DOI: 10.1002/hyp.14828. Disponível em: https://onlinelibrary.wiley.com/doi/10.1002/hyp.14828.

BARATI, Susan; RAYEGANI, Behzad; SAATI, Mehdi; SHARIFI, Alireza; NASRI, Masoud. Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas. **The Egyptian Journal of Remote Sensing and Space Science**, *[S. l.]*, v. 14, n. 1, p. 49–56, 2011. DOI: 10.1016/J.EJRS.2011.06.001. Acesso em: 10 set. 2022.

BAVEN, Keith. A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. Journal of Hydrology, [S. l.], v. 44, p. 169–190, 1979.

BECK, Hylke E.; VAN DIJK, Albert I. J. M.; LEVIZZANI, Vincenzo; SCHELLEKENS, Jaap; MIRALLES, Diego G.; MARTENS, Brecht; DE ROO, Ad. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. **Hydrology**

and Earth System Sciences, [S. l.], v. 21, n. 1, p. 589–615, 2017. DOI: 10.5194/hess-21-589-2017. Disponível em: https://hess.copernicus.org/articles/21/589/2017/.

BECK, Hylke E.; WOOD, Eric F.; PAN, Ming; FISHER, Colby K.; MIRALLES, Diego G.; VAN DIJK, Albert I. J. M.; MCVICAR, Tim R.; ADLER, Robert F. MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. **Bulletin of the American Meteorological Society**, *[S. l.]*, v. 100, n. 3, p. 473–500, 2019. DOI: 10.1175/BAMS-D-17-0138.1. Disponível em:

https://journals.ametsoc.org/view/journals/bams/100/3/bams-d-17-0138.1.xml.

BOLAÑOS-SÁNCHEZ, Claudia; PRADO-HERNÁNDEZ, Jorge Víctor; SILVÁN-CÁRDENAS, José Luis; VÁZQUEZ-PEÑA, Mario Alberto; MADRIGAL-GÓMEZ, José Manuel; MARTÍNEZ-RUÍZ, Antonio. Estimating Rainfall Interception of Pinus hartwegii and Abies religiosa Using Analytical Models and Point Cloud. **Forests**, *[S. l.]*, v. 12, n. 866, 2021. DOI: 10.3390/f12070866. Disponível em: https://www.mdpi.com/1999-4907/12/7/866.

BRYANT, Malcolm L.; BHAT, Shirish; JACOBS, Jennifer M. Measurements and modeling of throughfall variability for five forest communities in the southeastern US. **Journal of Hydrology**, *[S. l.]*, v. 312, n. 1–4, p. 95–108, 2005. DOI: 10.1016/j.jhydrol.2005.02.012. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0022169405000831.

BULCOCK, H. H.; JEWITT, G. P. W. Modelling canopy and litter interception in commercial
forest plantations in South Africa using the Variable Storage Gash model and idealised drying
curves. Hydrology and Earth System Sciences, [S. l.], v. 16, n. 12, p. 4693–4705, 2012. DOI:
10.5194/hess-16-4693-2012.Disponívelem:

https://hess.copernicus.org/articles/16/4693/2012/.

CALDER, Ian; DYE, Peter. Hydrological impacts of invasive alien plantsLand Use and Water Resources Research. [s.l: s.n.]. Disponível em: http://www.luwrr.com.

CALDER, Ian R. A stochastic model of rainfall interception. **Journal of Hydrology**, *[S. l.]*, v. 89, n. 1–2, p. 65–71, 1986. DOI: 10.1016/0022-1694(86)90143-5.

CALDER, Ian R. Water use by forests, limits and controls. **Tree Physiology**, *[S. l.]*, v. 18, p. 625–631, 1998. Disponível em: http://www.heronpublishing.com.

CHEN, Yong Cheng; BUNDY, Dwaine; HOFF, P. E. Steven. Modeling the Variation of Wind Speed with Height for Agricultural Source Pollution Control. Agricultural and Biosystems Engineering Publications, *[S. l.]*, 1998.

CUARTAS, Luz Adriana; TOMASELLA, Javier; NOBRE, Antonio Donato; HODNETT, Martin G.; WATERLOO, Maarten J.; MÚNERA, Juan Camilo. Interception water-partitioning
dynamics for a pristine rainforest in Central Amazonia: Marked differences between normal and dry years. **Agricultural and Forest Meteorology**, *[S. l.]*, v. 145, n. 1–2, p. 69–83, 2007. DOI: 10.1016/j.agrformet.2007.04.008.

CUI, Yaokui; JIA, Li. A Modified Gash Model for Estimating Rainfall Interception Loss of Forest Using Remote Sensing Observations at Regional Scale. **Water**, *[S. l.]*, v. 6, n. 4, p. 993–1012, 2014. DOI: 10.3390/w6040993. Disponível em: www.mdpi.com/journal/waterArticle.

CUNHA, John Elton de Brito Leite; NÓBREGA, Rodolfo L. B.; RUFINO, Iana Alexandra Alves; ERASMI, Stefan; GALVÃO, Carlos; VALENTE, Fernanda. Surface albedo as a proxy for land-cover clearing in seasonally dry forests: Evidence from the Brazilian Caatinga. **Remote Sensing of Environment**, *[S. l.]*, v. 238, p. 111250, 2020. DOI: 10.1016/j.rse.2019.111250. Disponível em: https://doi.org/10.1016/j.rse.2019.111250. Acesso em: 25 abr. 2021.

DAVID, Jorge Soares; VALENTE, Fernanda; GASH, John HC. Evaporation of Intercepted Rainfall. *Em*: **Encyclopedia of Hydrological Sciences**. Chichester, UK: John Wiley & Sons, Ltd, 2005. p. 1–8. DOI: 10.1002/0470848944.hsa046. Disponível em: https://onlinelibrary.wiley.com/doi/10.1002/0470848944.hsa046.

DING, Jie; ZHU, Qian. The accuracy of multisource evapotranspiration products and their applicability in streamflow simulation over a large catchment of Southern China. **Journal of Hydrology: Regional Studies**, *[S. l.]*, v. 41, 2022. DOI: 10.1016/j.ejrh.2022.101092.

DYKES, A. P. Rainfall interception from a lowland tropical rainforest in Brunei. **Journal of Hydrology**, *[S. l.]*, v. 200, n. 1–4, p. 260–279, 1997. DOI: 10.1016/S0022-1694(97)00023-1.

ELIADES, Marinos; BRUGGEMAN, Adriana; DJUMA, Hakan; CHRISTOU, Andreas; ROVANIAS, Konstantinos; LUBCZYNSKI, Maciek W. Testing three rainfall interception models and different parameterization methods with data from an open Mediterranean pine forest. **Agricultural and Forest Meteorology**, *[S. l.]*, v. 313, p. 108755, 2022. DOI: 10.1016/j.agrformet.2021.108755. Disponível em:

https://doi.org/10.1016/j.agrformet.2021.108755. Acesso em: 4 mar. 2022.

FATHIZADEH, O.; HOSSEINI, S. M.; KEIM, R. F.; BOLOORANI, A. Darvishi. A seasonal evaluation of the reformulated Gash interception model for semi-arid deciduous oak forest stands. **Forest Ecology and Management**, *[S. l.]*, v. 409, n. December 2017, p. 601–613, 2018. DOI: 10.1016/j.foreco.2017.11.058.

FATHIZADEH, O.; HOSSEINI, S. M.; ZIMMERMANN, A.; KEIM, R. F.; DARVISHI BOLOORANI, A. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands. **Science of The Total** **Environment**, *[S. l.]*, v. 601–602, p. 1824–1837, 2017. DOI: 10.1016/j.scitotenv.2017.05.233. Disponível em: http://dx.doi.org/10.1016/j.scitotenv.2017.05.233.

FORMAGGIO, Antonio Roberto; SANCHES, Ieda Del'Arco. Comportamento espectral de culturas agrícolas. *Em*: **Sensoriamento remoto em agricultura**. 1. ed. São Paulo: Editora Oficina de Textos, 2017. p. 288.

FUNK, Chris et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. **Scientific Data**, *[S. l.]*, v. 2, n. 1, p. 1–21, 2015. DOI: 10.1038/sdata.2015.66. Disponível em: http://www.nature.com/articles/sdata201566. Acesso em: 13 abr. 2022.

GALDOS, Fernando Vegas; ÁLVAREZ, César; GARCÍA, Andrés; REVILLA, José A. Estimated distributed rainfall interception using a simple conceptual model and Moderate Resolution Imaging Spectroradiometer (MODIS). **Journal of Hydrology**, *[S. l.]*, v. 468–469, p. 213–228, 2012. DOI: 10.1016/j.jhydrol.2012.08.043. Disponível em: http://dx.doi.org/10.1016/j.jhydrol.2012.08.043.

GASH, J. H. C. An analytical model of rainfall interception by forests.Quarterly Journal ofthe Royal Meteorological Society, [S. l.], v. 105, n. 443, p. 43–55, 1979.DOI:10.1002/qj.49710544304.Disponívelem:

```
https://onlinelibrary.wiley.com/doi/10.1002/qj.49710544304.
```

GASH, J. H. C.; LLOYD, C. R.; LACHAUD, G. Estimating sparse forest rainfall interception with an analytical model. **Journal of Hydrology**, *[S. l.]*, v. 170, n. 1–4, p. 79–86, 1995. DOI: 10.1016/0022-1694(95)02697-N. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/002216949502697N.

GASH, J. H. C.; VALENTE, F.; DAVID, J. S. Estimates and measurements of evaporation from wet, sparse pine forest in Portugal. **Agricultural and Forest Meteorology**, *[S. l.]*, v. 94, n. 2, p. 149–158, 1999. DOI: 10.1016/S0168-1923(99)00008-8.

GERMER, S.; ELSENBEER, H.; MORAES, J. M. Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondônia, Brazil).

Hydrology and Earth System Sciences, [S. l.], v. 10, n. 3, p. 383–393, 2006. DOI: 10.5194/hess-10-383-2006.

GERRITS, A. M. J.; SAVENIJE, Hubert H. G. Interception. *Em*: **Treatise on Water Science**. [s.l.] : Elsevier, 2011. v. 2p. 89–101. DOI: 10.1016/B978-0-444-53199-5.00029-4. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/B9780444531995000294. GHIMIRE, Chandra Prasad; BRUIJNZEEL, L. Adrian; LUBCZYNSKI, Maciek W.; RAVELONA, Maafaka; ZWARTENDIJK, Bob W.; VAN MEERVELD, H. J. (IIja). Measurement and modeling of rainfall interception by two differently aged secondary forests in upland eastern Madagascar. **Journal of Hydrology**, *[S. l.]*, v. 545, p. 212–225, 2017. DOI: 10.1016/j.jhydrol.2016.10.032. Disponível em: http://dx.doi.org/10.1016/j.jhydrol.2016.10.032.

GÓMEZ, J. A.; GIRÁLDEZ, J. V.; FERERES, E. Rainfall interception by olive trees in relationto leaf area. Agricultural Water Management, [S. l.], v. 49, n. 1, p. 65–76, 2001. DOI:10.1016/S0378-3774(00)00116-5.Disponívelem:

https://linkinghub.elsevier.com/retrieve/pii/S0378377400001165.

GORELICK, Noel; HANCHER, Matt; DIXON, Mike; ILYUSHCHENKO, Simon; THAU, David; MOORE, Rebecca. Google Earth Engine: Planetary-scale geospatial analysis for everyone. **Remote Sensing of Environment**, *[S. l.]*, v. 202, p. 18–27, 2017. DOI: 10.1016/j.rse.2017.06.031. Disponível em: https://doi.org/10.1016/j.rse.2017.06.031.

GRAY, Josh; SONG, Conghe. Mapping leaf area index using spatial, spectral, and temporal information from multiple sensors. **Remote Sensing of Environment**, *[S. l.]*, v. 119, p. 173–183, 2012. DOI: 10.1016/j.rse.2011.12.016. Disponível em: http://www.elsevier.com/copyright. Acesso em: 1 mar. 2022.

GUTMAN, G.; IGNATOV, A. Satellite-derived green vegetation fraction for the use in numerical weather prediction models. **Advances in Space Research**, *[S. l.]*, v. 19, n. 3, p. 477–480, 1997. DOI: 10.1016/S0273-1177(97)00058-6. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0273117797000586.

HELVEY, J. D.; PATRIC, J. H. Canopy and litter interception of rainfall by hardwoods of eastern United States. **Water Resources Research**, *[S. l.]*, v. 1, n. 2, p. 193–206, 1965. DOI: 10.1029/WR001i002p00193.

HOLDER, Curtis D.; LAUDERBAUGH, Leal K.; GINEBRA-SOLANELLAS, Roser M.; WEBB, Rebecca. Changes in leaf inclination angle as an indicator of progression toward leaf surface storage during the rainfall interception process. **Journal of Hydrology**, *[S. l.]*, v. 588, p. 125070, 2020. DOI: 10.1016/j.jhydrol.2020.125070. Disponível em: https://doi.org/10.1016/j.jhydrol.2020.125070. Acesso em: 28 fev. 2022.

HOLWERDA, F.; BRUIJNZEEL, L. A.; SCATENA, F. N.; VUGTS, H. F.; MEESTERS, A. G. C. A. Wet canopy evaporation from a Puerto Rican lower montane rain forest: The importance of realistically estimated aerodynamic conductance. **Journal of Hydrology**, *[S. l.]*,

v. 414–415, p. 1–15, 2012. DOI: 10.1016/j.jhydrol.2011.07.033. Disponível em: http://dx.doi.org/10.1016/j.jhydrol.2011.07.033.

HORTON, Robert E. Rainfall interception. **Monthly Weather Review**, *[S. l.]*, v. 47, n. 9, p. 603–623, 1919. DOI: 10.1175/1520-0493(1919)47<603:RI>2.0.CO;2. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/B9780444531995000294.

HOTT, Marcos C.; CARVALHO, Luis M. T.; ANTUNES, Mauro A. H.; RESENDE, João C.; ROCHA, Wadson S. D. Analysis of Grassland Degradation in Zona da Mata, MG, Brazil, Based on NDVI Time Series Data with the Integration of Phenological Metrics. **Remote Sensing**, *[S. l.]*, v. 11, n. 24, p. 2956, 2019. DOI: 10.3390/rs11242956. Disponível em: https://www.mdpi.com/2072-4292/11/24/2956.

HUETE, A.; JUSTICE, C.; LIU, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment, [S. l.], v. 49, n. 3, p. 224–234, 1994. DOI:10.1016/0034-4257(94)90018-3.Disponívelem:https://linkinghub.elsevier.com/retrieve/pii/0034425794900183.

HUETE, A. R. A soil-adjusted vegetation index (SAVI). **Remote Sensing of Environment**, *[S. l.]*, v. 25, n. 3, p. 295–309, 1988. DOI: 10.1016/0034-4257(88)90106-X. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/003442578890106X.

HUFFMAN, George J. et al. NASA Global Precipitation Measurement (GPM) IntegratedMulti-satellitE Retrievals for GPM (IMERG). [s.l.] : NASA/GSFC, Greenbelt, MD, USA,2019.a.DOI:10.5067/GPM/IMERG/3B-HH/06.Disponívelem:https://pmm.nasa.gov/sites/default/files/imce/times_allsat.jpg.Acesso em: 13 abr. 2022.

HUFFMAN, George J.; BOLVIN, David T.; NELKIN, Eric J.; WOLFF, David B.; ADLER, Robert F.; GU, Guojun; HONG, Yang; BOWMAN, Kenneth P.; STOCKER, Erich F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. **Journal of Hydrometeorology**, *[S. l.]*, v. 8, n. 1, p. 38–55, 2007. DOI: 10.1175/JHM560.1.

HUFFMAN, George J.; STOCKER, Erich F.; BOLVIN, David T.; NELKIN, Eric J.; TAN, Jackson. **GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06**. 2019b. DOI: 10.5067/GPM/IMERG/3B-HH/06. Acesso em: 17 jan. 2023.

IIDA, Shin'ichi et al. Intrastorm scale rainfall interception dynamics in a mature coniferous forest stand. **Journal of Hydrology**, *[S. l.]*, v. 548, p. 770–783, 2017. DOI: 10.1016/j.jhydrol.2017.03.009. Disponível em: http://dx.doi.org/10.1016/j.jhydrol.2017.03.009.

72

JACKSON, Ray D.; HUETE, Alfredo R. Interpreting vegetation indices.PreventiveVeterinary Medicine, [S. l.], v. 11, n. 3–4, p. 185–200, 1991.DOI: 10.1016/S0167-5877(05)80004-2.Disponívelem:

https://linkinghub.elsevier.com/retrieve/pii/S0167587705800042.

JIANG, Zhangyan; HUETE, Alfredo R.; DIDAN, Kamel; MIURA, Tomoaki. Development of a two-band enhanced vegetation index without a blue band. **Remote Sensing of Environment**, *[S. l.]*, v. 112, n. 10, p. 3833–3845, 2008. DOI: 10.1016/j.rse.2008.06.006.

JIANPING, Guo. Research progress of precipitation interception by plants. **J Appl Meteor Sci**, *[S. l.]*, v. 31, n. 6, p. 641–652, 2020.

JUSTUS, C. G.; MIKHAIL, Amir. Height variation of wind speed and wind distributions statisticsGeophysical Research Letters. [s.l: s.n.].

KUREEL, Neha; SARUP, Jyoti; MATIN, Shafique; GOSWAMI, Suresh; KUREEL, Kapil. Modelling vegetation health and stress using hypersepctral remote sensing data. **Modeling Earth Systems and Environment**, *[S. l.]*, v. 8, n. 1, p. 733–748, 2022. DOI: 10.1007/s40808-021-01113-8. Disponível em: https://link.springer.com/10.1007/s40808-021-01113-8.

KUTNER, Michael H.; NACHTSHEIM, Chris; NETER, John; LI, William. Applied linear statistical models. 5. ed. [s.l.] : McGraw-Hill/Irwin, 2005.

LANDRY, Stéphanie; ST-LAURENT, Martin-Hugues; NELSON, Peter R.; PELLETIER, Gaetan; VILLARD, Marc-André. Canopy Cover Estimation from Landsat Images: Understory Impact onTop-of-canopy Reflectance in a Northern Hardwood Forest. **Canadian Journal of Remote Sensing**, *[S. l.]*, v. 44, n. 5, p. 435–446, 2018. DOI: 10.1080/07038992.2018.1533399. Disponível em: https://doi.org/10.1080/07038992.2018.1533399.

LEUNING, R.; KRIEDEMANN, P. E.; MCMURTRIE, R. E. Simulation of evapotranspiration by treesAgricultural Water Management. [s.l: s.n.].

LEVIA, Delphis F.; FROST, Ethan E. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. **Journal of Hydrology**, *[S. l.]*, v. 274, n. 1–4, p. 1–29, 2003. DOI: 10.1016/S0022-1694(02)00399-2. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0022169402003992.

LEYTON, L.; REYNOLDS, E. R. C.; THOMPSON, F. B. Rainfall interception in forest and moorland. *Em*: (W. E. Sopper, H. W. Lull, Org.)INTERNATIONAL SYMPOSIUM ON FOREST HYDROLOGY 1967, Proceedings of a National Science Foundation Advanced Science Seminar Held at The Pennsylvania State University, Pennsylvania, August 29, September 10, 1965. Pergamon Press, Oxford, New York. **Anais** [...]. Proceedings of a National

Science Foundation Advanced Science Seminar Held at The Pennsylvania State University, Pennsylvania, August 29, September 10, 1965. Pergamon Press, Oxford, New York p. 163–178.

LIAN, Xu; ZHAO, Wenli; GENTINE, Pierre. Recent global decline in rainfall interception loss due to altered rainfall regimes. **Nature Communications 2022 13:1**, *[S. l.]*, v. 13, n. 1, p. 1–11, 2022. DOI: 10.1038/s41467-022-35414-y. Disponível em: https://www.nature.com/articles/s41467-022-35414-y. Acesso em: 20 dez. 2022.

LIANG, Shunlin; WANG, Jindi. Chapter 12 - Fractional vegetation cover. *Em*: LIANG, Shunlin; WANG, Jindi (org.). Advanced Remote Sensing. [s.l: s.n.]. p. 477–510. DOI: 10.1016/b978-0-12-815826-5.00012-x.

LIMOUSIN, Jean Marc; RAMBAL, Serge; OURCIVAL, Jean Marc; JOFFRE, Richard. Modelling rainfall interception in a mediterranean Quercus ilex ecosystem: Lesson from a throughfall exclusion experiment. **Journal of Hydrology**, *[S. l.]*, v. 357, n. 1–2, p. 57–66, 2008. DOI: 10.1016/j.jhydrol.2008.05.001.

LINHOSS, Anna C.; SIEGERT, Courtney M. A comparison of five forest interception models using global sensitivity and uncertainty analysis. **Journal of Hydrology**, *[S. l.]*, v. 538, p. 109–116, 2016. DOI: 10.1016/j.jhydrol.2016.04.011. Disponível em: http://dx.doi.org/10.1016/j.jhydrol.2016.04.011.

LIU, Qi; SU, Lijun; ZHANG, Chonglei; HU, Bingli; XIAO, Siyou. Dynamic variations of interception loss-infiltration-runoff in three land-use types and their influence on slope stability: An example from the eastern margin of the Tibetan Plateau. **Journal of Hydrology**, *[S. l.]*, v. 612, n. PB, p. 128218, 2022. DOI: 10.1016/j.jhydrol.2022.128218. Disponível em: https://doi.org/10.1016/j.jhydrol.2022.128218.

MA, Changkun; LI, Xiangdong; LUO, Yi; SHAO, Mingan; JIA, Xiaoxu. The modelling of rainfall interception in growing and dormant seasons for a pine plantation and a black locust plantation in semi-arid Northwest China. **Journal of Hydrology**, *[S. l.]*, v. 577, p. 123849,

2019.DOI:10.1016/j.jhydrol.2019.06.021.Disponívelem:https://doi.org/10.1016/j.jhydrol.2019.06.021.Acesso em: 28 fev. 2022.

MAGLIANO, Patricio N.; WHITWORTH-HULSE, Juan I.; FLORIO, Eva L.; AGUIRRE, Esteban C.; BLANCO, Lisandro J. Interception loss, throughfall and stemflow by Larrea divaricata : The role of rainfall characteristics and plant morphological attributes. **Ecological Research**, *[S. l.]*, v. 34, n. 6, p. 753–764, 2019. DOI: 10.1111/1440-1703.12036.

MARTENS, Brecht; MIRALLES, Diego G.; LIEVENS, Hans; VAN DER SCHALIE, Robin; DE JEU, Richard A. M.; FERNÁNDEZ-PRIETO, Diego; BECK, Hylke E.; DORIGO, Wouter A.; VERHOEST, Niko E. C. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. **Geoscientific Model Development**, *[S. l.]*, v. 10, n. 5, p. 1903–1925, 2017. DOI: 10.5194/gmd-10-1903-2017. Disponível em: https://gmd.copernicus.org/articles/10/1903/2017/.

MCFEETERS, S. K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. **International Journal of Remote Sensing**, *[S. l.]*, v. 17, n.

7, p. 1425–1432, 1996. DOI: 10.1080/01431169608948714. Disponível em: https://www.tandfonline.com/doi/full/10.1080/01431169608948714.

MEIRA, C. T.; PEREIRA, I. G.; FARAH, M. M.; PIRES, A. V.; GARCIA, D. A.; CRUZ, V.
A. R. Seleção de características morfofuncionais de cavalos da raça Mangalarga Marchador por meio da análise de componentes principais. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, [S. l.], v. 65, n. 6, p. 1843–1848, 2013. DOI: 10.1590/S0102-09352013000600036. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352013000600036&lng=pt&tlng=pt.

MENZEL, Lucas. Modellierung der Evapotranspiration im System Boden-Pflanze-Atmosphäre. 1996. ETH Zürich, Zürich, [S. l.], 1996. DOI: 10.3929/ethz-a-001696316.

MIRALLES, Diego G.; GASH, John H.; HOLMES, Thomas R. H.; DE JEU, Richard A. M.; DOLMAN, A. J. Global canopy interception from satellite observations. Journal of Geophysical Research Atmospheres, [S. l.], v. 115, n. 16, p. 1–8, 2010. DOI: 10.1029/2009JD013530.

MONTEITH, J. L. Evaporation and Environment. *Em*: 19TH SYMPOSIUM OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY 1965, **Anais** [...]. [s.l: s.n.] p. 205–234.

MUÑOZ SABATER, J. **ERA5-Land hourly data from 1981 to present**. 2019. DOI: https://doi.org/10.24381/cds.e2161bac. Acesso em: 17 jan. 2023.

MUÑOZ-SABATER, Joaquín et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. **Earth System Science Data**, *[S. l.]*, v. 13, n. 9, p. 4349–4383, 2021. DOI: 10.5194/essd-13-4349-2021.

MUZYLO, A.; LLORENS, P.; VALENTE, F.; KEIZER, J. J.; DOMINGO, F.; GASH, J. H. C. A review of rainfall interception modelling. **Journal of Hydrology**, *[S. l.]*, v. 370, n. 1–4, p. 191–206, 2009. DOI: 10.1016/j.jhydrol.2009.02.058. Disponível em: http://dx.doi.org/10.1016/j.jhydrol.2009.02.058.

NASHWAN, Mohamed Salem; SHAHID, Shamsuddin; WANG, Xiaojun. Assessment of Satellite-Based Precipitation Measurement Products over the Hot Desert Climate of Egypt. **Remote Sensing**, *[S. l.]*, v. 11, n. 555, 2019. DOI: 10.3390/rs11050555. Disponível em: https://www.mdpi.com/2072-4292/11/5/555.

NÁVAR, José. Modeling rainfall interception loss components of forests. **Journal of Hydrology**, *[S. l.]*, v. 584, p. 124449, 2020. DOI: 10.1016/j.jhydrol.2019.124449. Disponível em: https://doi.org/10.1016/j.jhydrol.2019.124449. Acesso em: 28 fev. 2022.

NÓBREGA, Cristina Materno Barros. **Modelação da Interceptação da Precipitação em Olival Possíveis implicações na Protecção das Plantas**. 2014. Dissertação (Mestrado em Engenharia Agronómica), Instituto Superior de Agronomia, *[S. l.]*, 2014.

OKAMOTO, K. i.; USHIO, T.; IGUCHI, T.; TAKAHASHI, N.; IWANAMI, K. The global satellite mapping of precipitation (GSMaP) project. *Em*: PROCEEDINGS. 2005 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2005. IGARSS '05.**Anais** [...]. : IEEE,[s.d.] p. 3414–3416. DOI: 10.1109/IGARSS.2005.1526575. Disponível em: http://ieeexplore.ieee.org/document/1526575/.

PENG, Yaohao; NAGATA, Mateus Hiro. An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data. **Chaos, Solitons & Fractals**, *[S. l.]*, v. 139, p. 110055, 2020. DOI: 10.1016/j.chaos.2020.110055. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0960077920304525.

PEREIRA, F. L.; VALENTE, Fernanda; DAVID, J. S.; JACKSON, N.; MINUNNO, F.; GASH, J. H. Rainfall interception modelling: Is the wet bulb approach adequate to estimate mean evaporation rate from wet/saturated canopies in all forest types? **Journal of Hydrology**, *[S. l.]*, v. 534, p. 606–615, 2016. DOI: 10.1016/j.jhydrol.2016.01.035. Disponível em: http://dx.doi.org/10.1016/j.jhydrol.2016.01.035. Acesso em: 4 mar. 2022.

PEREIRA, L. S.; PAREDES, P.; MELTON, F.; JOHNSON, L.; WANG, T.; LÓPEZ-URREA, R.; CANCELA, J. J.; ALLEN, R. G. Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. **Agricultural Water Management**, *[S. l.]*, v. 241, n. April, p. 106197, 2020. DOI: 10.1016/j.agwat.2020.106197.

PORTELLA, Ben-Hur Martins. **Tendências recentes da cobertura de nuvens cirrus sobre a região amazônica a partir de observações de satélite**. 2022. Dissertação de mestrado apresentada ao Instituto de Física da Universidade de São Paulo, São Paulo, 2022. PRICE, A. G.; CARLYLE-MOSES, D. E. Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada. **Agricultural and Forest Meteorology**, *[S. l.]*, v. 119, n. 1–2, p. 69–85, 2003. DOI: 10.1016/S0168-1923(03)00117-5.

QIAN, Yunkai; SHI, Changqing; ZHAO, Tingning; LU, Jinsheng; BI, Biao; LUO, Guangtian. Canopy Interception of Different Rainfall Patterns in the Rocky Mountain Areas of Northern China: An Application of the Revised Gash Model. **Forests**, *[S. l.]*, v. 13, n. 10, p. 1666, 2022. DOI: 10.3390/f13101666. Disponível em: https://www.mdpi.com/1999-4907/13/10/1666.

QINGMING, Wang et al. Effects of vegetation restoration on evapotranspiration water consumption in mountainous areas and assessment of its remaining restoration space. **Journal of Hydrology**, *[S. l.]*, v. 605, 2022. DOI: 10.1016/j.jhydrol.2021.127259.

QUEIROZ, Maria Gabriela De; SILVA, Thieres George Freire Da; SOUZA, Carlos André Alves De; JARDIM, Alexandre Maniçoba da Rosa Ferraz; ARAÚJO JÚNIOR, George do Nascimento; SOUZA, Luciana Sandra Bastos De; MOURA, Magna Soelma Beserra De. Composition of Caatinga Species Under Anthropic Disturbance and Its Correlation With Rainfall Partitioning. **Floresta e Ambiente**, *[S. l.]*, v. 28, n. 1, p. 20190044, 2021. DOI: 10.1590/2179-8087-floram-2019-0044. Disponível em: https://doi.org/10.1590/2179-8087-FLORAM-2019-0044. Acesso em: 22 ago. 2021.

RIBEIRO FILHO, Jacques Carvalho. Mensuração e modelagem da interceptação vegetal em uma microbacia perene de vertente. 2018. Universidade Federal Rural do Semi-árido, [S. l.], 2018. Acesso em: 28 fev. 2022.

RIBEIRO FILHO, Jacques Carvalho; LEMOS FILHO, Luis Cesar de Aquino; ANDRADE, Eunice Maia De; SILVA, Paulo Cesár Moura; CAMINHA, Mateus Pessoa. Incertezas na estimativa da interceptação vegetal por modelos físicos em microclima de altitude em semiárido tropical. **Scientia Forestalis**, *[S. l.]*, v. 47, n. 123, p. 395–403, 2019. DOI: 10.18671/scifor.v47n123.02. Acesso em: 30 maio. 2021.

ROBERTS, John; PITMAN, Rona M.; WALLACE, J. S. A Comparison of Evaporation from Stands of Scots Pine and Corsican Pine in Thetford Chase, East Anglia. **The Journal of Applied Ecology**, *[S. l.]*, v. 19, n. 3, p. 859, 1982. DOI: 10.2307/2403288. Disponível em: https://www.jstor.org/stable/2403288?origin=crossref.

ROBINSON, M.; GRANT, S. J.; HUDSON, J. A. Measuring rainfall to a forest canopy: an assessment of the performance of canopy level raingaugesHydrology and Earth System Sciences. [s.l: s.n.].

RODELL, Matthew et al. The Global Land Data Assimilation System. **Bulletin of the American Meteorological Society**, *[S. l.]*, v. 85, n. 3, p. 381–394, 2004. DOI: 10.1175/BAMS-85-3-381.

RODRIGUES, André Ferreira; MELLO, Carlos Rogério De; NEHREN, Udo; RIBEIRO, JoãoPedro de Coimbra; MANTOVANI, Vanessa Alves; MELLO, José Marcio De. Modelingcanopy interception under drought conditions: The relevance of evaporation and extra sourcesof energy. Journal of Environmental Management, [S. l.], v. 292, n. May, p. 112710, 2021.DOI:10.1016/j.jenvman.2021.112710.Disponívelem:https://doi.org/10.1016/j.jenvman.2021.112710.Acesso em: 6 mar. 2022.

ROUSE JR., J. W.; HASS, R. H.; SCHELL, J. A.; DEERINGG, D. W. Monitoring vegetation systems in the great plains with ERTS. *Em*: THIRD EARTH RESOURCES TECHNOLOGY SATELLITE-1 SYMPOSIUM 1974, **Anais** [...]. [s.l: s.n.] p. 309–317.

RUTTER, A. J.; KERSHAW, K. A.; ROBINS, P. C.; MORTON, A. J. A predictive model ofrainfall interception in forests, 1. Derivation of the model from observations in a plantation ofCorsican pine. Agricultural Meteorology, [S. l.], v. 9, p. 367–384, 1971. DOI: 10.1016/0002-1571(71)90034-3.Disponívelem:

https://linkinghub.elsevier.com/retrieve/pii/0002157171900343. Acesso em: 4 mar. 2022.

RUTTER, A. J.; MORTON, A. J.; ROBINS, P. C. A Predictive Model of Rainfall Interceptionin Forests. II. Generalization of the Model and Comparison with Observations in SomeConiferous and Hardwood Stands. The Journal of Applied Ecology, [S. l.], v. 12, n. 1, p. 367,1975.DOI:10.2307/2401739.Disponívelem:https://www.jstor.org/stable/2401739?origin=crossref.

SÁ, João Henrique Macedo. A influência da vegetação no processo de interceptação da chuva em floresta de Mata Atlântica. 2019. Universidade Federal de Santa Catarina, Florianópolis, [S. l.], 2019.

SÁ, João Henrique Macedo; CHAFFE, Pedro Luiz Borges; OLIVEIRA, Debora Yumi De. Análise comparativa dos modelos de Gash e de Rutter para a estimativa da interceptação por Floresta Ombrófila Mista. **Revista Brasileira de Recursos Hídricos**, *[S. l.]*, v. 20, n. 4, p. 1008–1018, 2015. DOI: 10.21168/rbrh.v20n4.p1008-1018. Acesso em: 29 maio. 2021.

SADEGHI, Mojtaba; NGUYEN, Phu; NAEINI, Matin Rahnamay; HSU, Kuolin; BRAITHWAITE, Dan; SOROOSHIAN, Soroosh. PERSIANN-CCS-CDR, a 3-hourly 0.04° global precipitation climate data record for heavy precipitation studies. **Scientific Data**, *[S. l.]*, v. 8, n. 1, p. 157, 2021. DOI: 10.1038/s41597-021-00940-9.

SAHA, Suranjana et al. The NCEP Climate Forecast System Version 2. Journal of Climate, *[S. l.]*, v. 27, n. 6, p. 2185–2208, 2014. DOI: 10.1175/JCLI-D-12-00823.1.

SHI, Xiaoliang; BAO, Yanfeng Bao; LIANG, Qi. Applying the Revised Gash analytical model of precipitation interception to Pinus sylvestris var. Mongolica in orqin Sandy Land, northeastern China. **Freseneius Environmental Bulletin**, *[S. l.]*, v. 31, n. 01, p. 572–582, 2022. SHUAI, Yanmin; MASEK, Jeffrey G.; GAO, Feng; SCHAAF, Crystal B.; HE, Tao. An approach for the long-term 30-m land surface snow-free albedo retrieval from historic Landsat surface reflectance and MODIS-based a priori anisotropy knowledge. **Remote Sensing of Environment**, *[S. l.]*, v. 152, p. 467–479, 2014. DOI: 10.1016/j.rse.2014.07.009. Disponível em: http://dx.doi.org/10.1016/j.rse.2014.07.009.

SINGER, Michael Bliss; ASFAW, Dagmawi Teklu; ROSOLEM, Rafael; CUTHBERT, Mark O.; MIRALLES, Diego G.; MACLEOD, David; QUICHIMBO, Edisson Andres; MICHAELIDES, Katerina. Hourly potential evapotranspiration at 0.1° resolution for the global land surface from 1981-present. **Scientific Data**, *[S. l.]*, v. 8, n. 1, p. 224, 2021. DOI: 10.1038/s41597-021-01003-9.

SU, Lei; YANG, Jing; ZHAO, Xiang; MIAO, Yuan. Effects of fire on interception loss in a coniferous and broadleaved mixed forest. **Journal of Hydrology**, *[S. l.]*, v. 613, n. PA, p. 128425, 2022. a. DOI: 10.1016/j.jhydrol.2022.128425. Disponível em: https://doi.org/10.1016/j.jhydrol.2022.128425.

SU, Lei; YANG, Jing; ZHAO, Xiang; MIAO, Yuan. Effects of fire on interception loss in a coniferous and broadleaved mixed forest. **Journal of Hydrology**, *[S. l.]*, v. 613, n. PA, p. 128425, 2022. b. DOI: 10.1016/j.jhydrol.2022.128425. Disponível em: https://doi.org/10.1016/j.jhydrol.2022.128425.

TANI, Makoto; NIK, Abdul Rahim; YASUDA, Yukio; NOGUCHI, Shoji; SHAMSUDDIN, Siti Aisah; SAHAT, Mohd M. D.; TAKANASHI, Satoru. Long-term estimation of evapotranspiration from a tropical rain forest in Peninsular Malaysia. **IAHS-AISH Publication**, *[S. l.]*, n. 280, p. 267–274, 2003.

THOM, A. S. Momentum, mass and heat exchange of vegetation. Quarterly Journal of the Royal Meteorological Society, [S. l.], v. 098, n. 415, p. 124–134, 1972. DOI: 10.1256/smsqj.41509.

VALENTE, F.; DAVID, J. S.; GASH, J. H. C. Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. **Journal of Hydrology**, *[S. l.]*, v. 190, n. 1–2, p. 141–162, 1997. DOI: 10.1016/S0022-1694(96)03066-1.

VALENTE, Fernanda; GASH, John H.; NÓBREGA, Cristina; DAVID, Jorge Soares; PEREIRA, Fernando Leite. Modelling rainfall interception by an olive-grove/pasture system with a sparse tree canopy. **Journal of Hydrology**, *[S. l.]*, v. 581, p. 124417, 2020. DOI: 10.1016/j.jhydrol.2019.124417. Disponível em: https://doi.org/10.1016/j.jhydrol.2019.124417. VAN DIJK, A. I. J. M.; BRUIJNZEEL, L. A. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description. **Journal of Hydrology**, *[S. l.]*, v. 247, n. 3–4, p. 230–238, 2001. a. DOI: 10.1016/S0022-1694(01)00392-4. Disponível em: www.elsevier.com/locate/jhydrol. Acesso em: 15 abr. 2022.

VAN DIJK, A. I. J. M.; BRUIJNZEEL, L. A. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 2. Model validation for a tropical upland mixed cropping system. Journal of Hydrology, [S. l.], v. 247, n. 3–4, p. 239–262, 2001.
b. DOI: 10.1016/S0022-1694(01)00393-6. Disponível em: www.elsevier.com/locate/jhydrol. Acesso em: 12 mar. 2022.

VAN STAN, John T.; PYPKER, Thomas G. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. **Science of the Total Environment**, *[S. l.]*, v. 536, p. 813–824, 2015. DOI: 10.1016/j.scitotenv.2015.07.134. Disponível em: http://dx.doi.org/10.1016/j.scitotenv.2015.07.134.

VON HOYNINGEN-HUENE, J. Die interzeption des Niederschlags in landwirtschaftlichen Pflanzenbeständen. Arbeitsbericht Deutscher verband für Wasserwirtschaft und Kulturbau, [S. l.], v. 57, p. 1–53, 1981.

WALLACE, Jim; MCJANNET, Dave. Modelling interception in coastal and montane rainforests in northern Queensland, Australia. **Journal of Hydrology**, *[S. l.]*, v. 348, n. 3–4, p. 480–495, 2008. DOI: 10.1016/j.jhydrol.2007.10.019.

WANG, Di; WANG, Li. Canopy interception of apple orchards should not be ignored when assessing evapotranspiration partitioning on the Loess Plateau in China. **Hydrological Processes**, *[S. l.]*, v. 33, n. 3, p. 372–382, 2019. DOI: 10.1002/hyp.13330. Disponível em: https://onlinelibrary.wiley.com/doi/10.1002/hyp.13330.

WANG, Di; WANG, Li; ZHANG, Rui. Measurement and modeling of canopy interception losses by two differently aged apple orchards in a subhumid region of the Yellow River Basin. **Agricultural Water Management**, *[S. l.]*, v. 269, n. 26, p. 107667, 2022. DOI: 10.1016/j.agwat.2022.107667. Disponível em: https://doi.org/10.1016/j.agwat.2022.107667.

WANG, Zhuosen; ERB, Angela M.; SCHAAF, Crystal B.; SUN, Qingsong; LIU, Yan; YANG, Yun; SHUAI, Yanmin; CASEY, Kimberly A.; ROMÁN, Miguel O. Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data. **Remote Sensing of Environment**, *[S. l.]*, v. 185, p. 71–83, 2016. DOI: 10.1016/j.rse.2016.02.059. Disponível em: http://dx.doi.org/10.1016/j.rse.2016.02.059.

WEI, Lezhang; QIU, Zhijun; ZHOU, Guangyi; ZUECCO, Gulia; LIU, Yu; WU, Zhifeng. Rainfall interception recovery in a subtropical forest damaged by the great 2008 ice and snow storm in southern China. **Journal of Hydrology**, *[S. l.]*, v. 590, n. June, p. 125232, 2020. DOI: 10.1016/j.jhydrol.2020.125232. Disponível em: https://doi.org/10.1016/j.jhydrol.2020.125232. Acesso em: 28 fev. 2022.

XIE, Pingping; JOYCE, Robert; WU, Shaorong; YOO, S. H.; YAROSH, Yelena; SUN, Fengying; LIN, Roger. NOAA Climate Data Record (CDR) of CPC Morphing Technique (CMORPH) High Resolution Global Precipitation Estimates, Version 1. 2023.

XU, Hanqiu. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. **International Journal of Remote Sensing**, *[S. l.]*, v. 27, n. 14, p. 3025–3033, 2006. DOI: 10.1080/01431160600589179. Disponível em: https://www.tandfonline.com/doi/full/10.1080/01431160600589179.

YANG, Byungsun; LEE, Dong Kun; HEO, Han Kyul; BIGING, Gregory. The effects of tree characteristics on rainfall interception in urban areas. **Landscape and Ecological Engineering**, *[S. l.]*, v. 15, n. 3, p. 289–296, 2019. DOI: 10.1007/s11355-019-00383-w.

YU, Chen; HU, Deyong; DI, Yufei; WANG, Yichen. Performance evaluation of IMERG precipitation products during typhoon Lekima (2019). **Journal of Hydrology**, *[S. l.]*, v. 597, n. 105, p. 126307, 2021. DOI: 10.1016/j.jhydrol.2021.126307. Disponível em: https://doi.org/10.1016/j.jhydrol.2021.126307.

YU, Chen; HU, Deyong; LIU, Manqing; WANG, Shasha; DI, Yufei. Spatio-temporal accuracy evaluation of three high-resolution satellite precipitation products in China area. **Atmospheric Research**, *[S. l.]*, v. 241, n. 105, p. 104952, 2020. DOI: 10.1016/j.atmosres.2020.104952. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0169809520301009.

ZAHIR, Siti Anis Dalila Muhammad; OMAR, Ahmad Fairuz; JAMLOS, Mohd Faizal; AZMI, Mohd Azraie Mohd; MUNCAN, Jelena. A review of visible and near-infrared (Vis-NIR) spectroscopy application in plant stress detection. **Sensors and Actuators A: Physical**, *[S. l.]*, v. 338, p. 113468, 2022. DOI: 10.1016/j.sna.2022.113468. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0924424722001066. ZHANG, Jun; BRUIJNZEEL, L. Adrian; VAN MEERVELD, H. J. (Ilja); GHIMIRE, Chandra P.; TRIPOLI, Roger; PASA, Arturo; HERBOHN, John. Typhoon-induced changes in rainfall interception loss from a tropical multi-species 'reforest'. **Journal of Hydrology**, *[S. l.]*, v. 568, n. August 2017, p. 658–675, 2019. a. DOI: 10.1016/j.jhydrol.2018.11.024. Disponível em: https://doi.org/10.1016/j.jhydrol.2018.11.024.

ZHANG, Yongqiang; KONG, Dongdong; GAN, Rong; CHIEW, Francis H. S.; MCVICAR, Tim R.; ZHANG, Qiang; YANG, Yuting. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. **Remote Sensing of Environment**, *[S. l.]*, v. 222, n. May 2018, p. 165–182, 2019. b. DOI: 10.1016/j.rse.2018.12.031. Disponível em: https://doi.org/10.1016/j.rse.2018.12.031.

ZHENG, Chaolei; JIA, Li. Global canopy rainfall interception loss derived from satellite earth observations. **Ecohydrology**, *[S. l.]*, v. 13, n. 2, 2020. DOI: 10.1002/eco.2186. Disponível em: https://doi.org/10.1002/eco.2186.

ZHONG, Feng; JIANG, Shanhu; VAN DIJK, Albert I. J. M.; REN, Liliang; SCHELLEKENS, Jaap; MIRALLES, Diego G. Revisiting large-scale interception patterns constrained by a synthesis of global experimental data. **Hydrology and Earth System Sciences**, *[S. l.]*, v. 26, n. 21, p. 5647–5667, 2022. DOI: 10.5194/hess-26-5647-2022. Disponível em: https://hess.copernicus.org/articles/26/5647/2022/.

ZOTARELLI, Lincoln; DUKES, Michael D.; ROMERO, Consuelo C.; MIGLIACCIO, Kati W.; MORGAN, Kelly T. Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). Institute of Food and Agricultural Sciences, , 2020.

Autores	Ano	DOI	Classificação	Local de estudo	País	Coordenadas	Período experimental	Tipo de vegetação	Espécies
Bulcock & Jewitt	2012	10.5194/hess- 16-4693-2012	А	Council for Scientific and Industrial Research (CSIR)	África do Sul	29°12'19.2"S 30°39'02.7"E	Abril/2008 - Março/2011	Caducifólias	Eucalyptus grandis, Acacia mearnsii and Pinus patula
Carlyle-Moses & Price	1999	10.1016/S002 2- 1694(98)0027 4-1	A	Èrindale Ecological Research Area, Ontário	Canadá	43°33'01" N, 79°39'08" W	15/Maio/1995 27/Setembro/1 995	Caducifólias	Red oak (Quercus ruba), sugar maple (Acer saccharum) and American beech (Fagus grandifolia)
Carlyle-Moses & Price	2007	10.1002/hyp.6 790	A	Bosque Escuela Experimental Research Station, Sierra Madre	Mexico	24°42'19" N, 99°52'11" W	01/Janeiro/19 99 - 03/Julho/2001	Caducifólias	White pine variant (Pinus pseudostrobus Lindl.), red oak (Quercus canbyi Trel.) and white oak (Q. laeta Trel.)
Chen e Li	2016	10.3390/w801 0014	Α	Lien-Hua- Chih Research Center	Taiwan	23°55'52" N, 120°53'39" E	Maio/2008 - Setembro/200 8	Perenes	Melastomatac eae, Lauraceae, Proteaceae, Rubiaceae, Araliaceae and Fagaceae are the most important tree families of the area.

APÊNDICE A – DESCRIÇÃO DOS LOCAIS, PERÍDOS DE ESTUDO E VEGETAÇÃO

Autores	Ano	DOI	Classificação	Local de	País	Coordenadas	Período	Tipo de	Espécies
				estudo			experimental	vegetação	
Cuartas et al.	2007	10.1016/j.agrf ormet.2007.04 .008	А	Cuieiras Biological Reservation, Manaus	Brasil	2°35'21.08"S, 60°6'53.63"W	Julho/2002 - Fevereiro/200 4	Perenes	Many tree species
Domingo et al.	1998	10.1016/S016 8- 1923(98)0006 8-9	Α	Rambla Honda, Almería	Espanha	37°7'47" N, 2°22'17"W	15/Abril/1994 31/Maio/1994 and 28/Fevereiro/1 995 - 30/Junho/199 5	Arbustos	Two semiarid shrubs (Anthyllis cytisoides L. and Retama sphaerocarpa (L.) Boiss.) and a tussock grass (Stipa tenacissima L.)
Fan, Oestergaard, Guyot & Lockington	2014	10.1016/j.jhyd rol.2014.04.06 6	А	Pine plantation, Queensland	Australia	26°59'04"S, 153°08'18"E	1/Maio/2012 - 30/Abril/2013	Coníferas	Exotic pine hybrid (Pinus elliottii Engelm. x Pinus caribaea Morelet var. hondurensis)
Ghimire et al.	2017	10.1016/j.jhyd rol.2016.10.03 2	Α	Ankeniheny- Zhamena corridor	Madagascar	18°55'54.0"S 48°24'42.0"E	1/Outubro/201 4 - 30/Setembro/2 015	Perenes	Semi-mature forest. Abarahamia ditimena, Brachulaena ramiflora, Cryptocaria sp., Ocotea samosa, Eugenia spp., and Leptolaena

Autores	Ano	DOI	Classificação	Local de	País	Coordenadas	Período	Tipo de	Espécies
				estudo			experimental	vegetação	
Ghimire et al.	2017	10.1016/j.jhyd rol.2016.10.03 2	A	Ankeniheny- Zhamena corridor	Madagascar	18°56'50.0"S 48°23'43.0"E	1/Outubro/201 4 - 30/Setembro/2 015	Perenes	Young forest. Psiadia altissima trees, Cassinopsis madagascarie nsis and
Hassan	2017	10.1016/i ibyd	٨	Sardon	Fenanha	41°7'25"N	1/Outubro/201	Daranas	madagascarie nsis
Guimire & Lubczynski	2017	rol.2017.08.01 6	A	catchment	Espainia	6°7'48"W	1 - 30/Setembro/2 013	reiches	ilex)
Hassan, Guimire & Lubczynski	2017	10.1016/j.jhyd rol.2017.08.01 6	А	Sardon catchment	Espanha	41°3'46"N, 6°12'53"W	1/Outubro/201 1 - 30/Setembro/2 014	Caducifólias	Quercus pyrenaica
Hölscher et al.	2004	10.1016/j.jhyd rol.2004.01.01 5	A	Río Savegre watershed	Costa Rica	9°35'40"N, 83°44'30"W	Setembro/199 9 - Agosto/2000	Caducifólias	Dominated by oaks (Quercus copeyensis C.H. Mu II. and Quercus costaricensis)
Hörmann et al.	1996	10.1016/0168- 1923(95)0227 5-9	А	Weichsel, Schleswig- Holstein	Alemanha	54°06'N, 10°15'E	Junho/1990 - Dezembro/19 91	Caducifólias	Beech forest (Asperulo- Fagetum)
Jeong et al.	2022	10.3390/f1305 0657	А	Kasuya Research Forest, Kyushu University, Fukuoka	Japão	33°37'58" N, 130°31'48" E	Abril/2017 - Outubro/2017	Coníferas	Japanese cypress (Chamaecypar is obtusa Endl.)
Junqueira Junior et al.	2019	10.1016/j.agrf ormet.2019.05 .016	А	Lavras, Minas Gerais	Brasil	21°13'40"S, 44°55'50"W	1/Setembro/20 12 -	Caducifólias	Many tree species

Autores	Ano	DOI	Classificação	Local de estudo	País	Coordenadas	Período experimental	Tipo de vegetação	Espécies
							15/Março/201 5		
Lankreijer et al.	1999	10.1016/S016 8-	А	NOPEX site, Uppsala	Suíça	60°5'N, 17°29'E	16/Maio/1995	Coníferas	Composed of Norway
		1923(99)0012 6-4					31/Outubro/19 95		spruce (Picea abies (L.), 66% of the stand basal area); and Scots pine (Pinus sylvestris (L.), 33%) with a few specimens of birch (Betula alba
Lankreijer et al.	1993	10.1016/0168- 1923(93)9002 8-G	А	Ede, Gelderland	Holanda	52°02′19"N, 5°45'06"E	Julho/1988 - Setembro/198 9	Caducifólias	(L.)) Red oak (Quercus rubra)
Li, Cai, Man, Sheng & Ju	2015	10.1007/s4033 3-015-0013-4	Α	Great Khingan Mountains, Heilongjiang province	China	53°24'58"N, 122°17'09"E	1/Julho/2012 - 30/Setembro/2 013	Coníferas	Xingan larch (Larix gmelimii), birch (Betula platyphylla), pine (P. sylvestris) and aspen (Populus davidiana)
Li, Zhang & Niu	2021	10.2166/nh.20 21.085	А	Yaoxiang National Forest Park, Mount Tai	China	36°19'45" N, 117°07'05" E	Maio/2017 - Outubro/2017	Coníferas	Pt Carr., Quercus acutissima Carr., Pinus densiflora Sieb., Robinia

Autores	Ano	DOI	Classificação	Local de estudo	País	Coordenadas	Período experimental	Tipo de vegetação	Espécies
									pseudoacacia, and Castanea mollissima
Liang	2014	10.5424/fs/20 14232-03410	А	Mulan forestry, Hebei	China	41°49'35.8"N, 117°35'31"E	Junho/2010 - Outubro/2010	Coníferas	Pinus tabulaeformis
Limousin, Rambal, Ourcival & Ioffre	2008	10.1016/j.jhyd rol.2008.05.00 1	А	Puéchabon State Forest, Montpellier	França	43°44'29"N, 3°35'45"E	25/Abril/2006 - 15/Maio/2007	Perenes	Quercus ilex evergreen oak
Loescher et al.	2005	10.1016/j.jhyd rol.2005.03.04 0	Α	La Selva Biological Station, Puerto Viejo de Sarapiquí	Costa Rica	10°25'51"N, 84°00'59"W	Setembro/199 7- Dezembro/20 00	Perenes	Dominated by the mimosoid legume canopy species, Pentaclethra macroloba
Lopes et al.	2020	10.1016/j.jhyd rol.2020.1254 97	Α	Floresta, Pernambuco	Brasil	08°18′31"S, 38°31′37"W	1/Março/2016 - 30/Setembro/2 017	Caducifólias	Spondias tuberosa, Commiphora leptophloeos, Cnidoscolus quercifolius, Aspidosperma pyr-ifolium, and Cenostigma pyramidale,
Loustau et al.	1992	10.1016/0022- 1694(92)9013 1-E	А	Bray forest, Bordeaux (Summer)	França	44°42'N, 0°46'W	Abril/1987 - Outubro/1989	Coníferas	Maritime pine (Pinus pinaster Ait.)
Motahari et al.	2013		А	Chitgar Forest Park, Tehran	Irã	35°43'53.5"N, 51°12'42.9"E	Setembro/200 9 - Abril/2010	Coníferas	Pinus eldarica Medw. afforestation

Autores	Ano	DOI	Classificação	Local de	País	Coordenadas	Período experimental	Tipo de vegetação	Espécies
Pereira et al.	2009	10.1016/j.agrf ormet.2008.10 .014	A	Herdade de Mitra, Évora	Portugal	38°32'N, 8°00'W	Julho/2006 - Maio/2007	Caducifólias	mixed oak woodland dominated by evergreen oaks (Quercus sp.)
Pypker et al.	2005	10.1016/j.agrf ormet.2005.03 .003	A	Gifford Pinchot National Forest, Washington (Young forest)	EUA	45°49'07.89" N, 121°59'38.95" W	17/Junho/200 2 - 30/Novembro/ 2002	Coníferas	Douglas-fir (Pseudotsuga menziesii) forest
Pypker et al.	2005	10.1016/j.agrf ormet.2005.03 .003	A	Gifford Pinchot National Forest, Washington (Old forest)	EUA	45°49'13.76" N,121°54'06.8 8"W	30/Março/200 0 - 3/Dezembro/2 000	Coníferas	Douglas-fir (Pseudotsuga menziesii) forest
Ringgaard, Herbst & Friborg	2014	10.1016/j.jhyd rol.2014.06.00 7	Α	Palsgård Forest District, Jutland	Dinamarca	56°4.4'N, 9°20.1'E	Fevereiro/201 0 - Dezembro/20 11	Coníferas	Gludsted Plantation. The plantation consists mainly of Norway spruce [Picea abies (L.) H. Karst.] and Grand Fir [Abies grandis (Douglas ex D. Don) Lindl.]
Shi et al.	2010	10.1016/j.jhyd rol.2010.02.00 3	А	Xiangshuihe's watershed, Liupan Mountain	China	35°29.6'N, 106°15.5'E	Junho/2005 - Setembro/200 5	Coníferas	Pinus armandii natural forest

Autores	Ano	DOI	Classificação	Local de	País	Coordenadas	Período	Tipo de	Espécies
C st sl	2016	10.1002/1	•	estudo	Cline	21010/22//N	experimental	vegetaçao	TT1
Su et al.	2016	10.1002/eco.1	A	Snennongjia	China	$31^{\circ}18^{\circ}23^{\circ}N$,	$1/Ma_{10}/2014 - 21/Q_{10}/20$	Perenes	I ne dominant
		/49		Biodiversity		110°28'2/"E	31/Outubro/20		species were
				Research			14		Cyclobalanop
				Station, Hubei					S1S
									multinervis,
									Cyclobalanop
									sis oxyodon,
									Fagus
									engleriana and
									Quercus
Távora b	2020	10.2200/m120	٨	Constings	Dragil	1505710 59"	Outubro 2015	Caducifálias	Mony troo
ravora &	2020	10.3390/W120 92129	A	Capetinga	Drasii	15 57 19.58	Outubro/2013	Caducitonias	many tree
Kolue		02120		watarshad		3, 17°56'33 11"	- Fovoroiro/201		species
				Brosílio		47 50 55.11 W	6		
Tu at al	2021	10,1002/acc,2	٨	Diadiagou	China	99 25°58'10" N	0 Majo/2011	Coníforas	Larch
Tu ct al.	2021	283	Л	watershed	Clinia	106°8'54" F	Setembro/2011 -	Conneras	nlantation
		205		L jupan		100 8 J4 E	3		(Lariy
				Mountains			5		nrincinis-
				Wouldanis					rupprechtii)
Valente et al	1997	10 1016/\$002	А	Herdade da	Portugal	38°38'N	Ianeiro/1992 -	Eucalyptus	Eucalyptus
valente et al.	1777	2-	11	Espirra	ronugui	8°36'W	Julho/1994	Eucuryptus	(Eucalyptus
		1694(96)0306		Lopinu		0.50 11	Junio		globulus
		6-1							Labill.)
Valente et al.	1997	10.1016/S002	А	Pinhal de	Portugal	38°50N.	Janeiro/1992 -	Coníferas	Maritime pine
		2-		Carrasqueira	8	8°51W	Julho/1994		(Pinus
		1694(96)0306		1					pinaster
		6-1							Aiton)
Vernimmen,	2007	10.1016/j.jhyd	А	Central	Indonesia	0°03'41"S,	7/Maio/2002 -	Perenes	Lowland
Bruijnzeel,		rol.2007.04.00		Kalimantan		114°0'10"É	6/Maio/2003		Evergreen
Romdoni &		9							Rain Forest,
Proctor									tall and
									stunted Heath
									Forest

Autores	Ano	DOI	Classificação	Local de	País	Coordenadas	Período	Tipo de	Espécies
				estudo			experimental	vegetação	
Wallace &	2008	10.1016/j.jhyd	А	Oliver Creek,	Australia	16° 08.3'S,	22/Junho/200	Perenes	Complex
McJannet		rol.2007.10.01		North		145° 20.4 E	I = 20/I = 1 = /200		mesophyll
		9		Queensland			$\frac{30}{\text{Junno}/200}$		vine forest
Wallace &	2008	10 1016/i ihvd	А	Mount Lewis	Australia	16° 31 7'S	21/Dezembro/	Perenes	Simple
McIannet	2000	rol 2007 10 01		1 North	Tubliullu	145° 167'E	2000 -	i ciciles	notophyll vine
11200 4111100		9		Oueensland		110 10072	30/Junho/200		forest
		-		C			4		
Wallace &	2008	10.1016/j.jhyd	А	Mount Lewis	Australia	16° 31.8'S	13/Julho/2001	Perenes	Simple
McJannet		rol.2007.10.01		2, North		145° 16.3'E	_		notophyll vine
		9		Queensland			30/Junho/200		forest
							4		
Whelan &	1996	10.1016/S002	А	Haldun forest,	Inglaterra	50°37′46″N,	8/Dezembro/1	Coníferas	Norway
Anderson		2-		Devon		3°36′02″ W	994 -		spruce (Picea
		1694(96)0302					6/Fevereiro/19		abies (Karst)
Thong at al	2018	0-X 10 1002/aaa 2	٨	Oinghai Laka	China	27025120 1"N	95 1/Junho/2012	Arbustos	L.) The dominant
Zhang et al.	2018	011	A	watershed	Ciiiia	100°00'21 6"F	1/Juiii0/2012	Albusios	species in the
		011		Oinghai-Tibet		100 00 21.0 L	11/Setembro/2		region is the
				Plateau			012		Prunus
									fruticosa
									shrub
Aboal et al.	1999	10.1016/S016	В	Água Garcia	Espanha	28°27'N,	30/Dezembro/	Perenes	Laurel forest
		8-		Mountains,		16°24'W	1994 -		with Myrica
		1923(99)0008		Tenerife			31/Dezembro/		faya Ait.,
		3-0					1995		Laurus azorica
									(Seub.)
									Franco, Persea
									Sprong Erico
									arborea I
									Ilex perado
									SSD.
									plathyphylla
									Webb &
									Amarra, and

Autores	Ano	DOI	Classificação	Local de estudo	País	Coordenadas	Período experimental	Tipo de vegetação	Espécies
									Ilex canariensis Poivet
Buttle & Farnsworth	2012	10.1016/j.jhyd rol.2012.08.02 1	В	Oak Ridges Moraine, Ontário	Canadá	44°5'N, 78°30'W	11/Maio/2009 22/Outubro/20 09 and 04/Maio/2010 - 27/Outubro/20 10	Caducifólias	mainly red oak (Quercus rubra L.), with smaller amounts of white birch (Betula papyrifera Marsh.), sugar maple (Acer saccharum Marsh.) and other bardwoods
Chen et al.	2013	10.3390/w801 0014	В	Huoditang, Ningshan County	China	33°18'N, 108°20'E	Junho/2006 - Outubro/2008	Coníferas	Chinese red pine (Pinus tabuliformis) with other tree species such as Quercus aliena var. acuteserrata, Pinus armandii, Betula albo- sinensis, Toxicodendro n vernicifluum, and Acer davi- di

Autores	Ano	DOI	Classificação	Local de	País	Coordenadas	Período	Tipo de	Espécies
				estudo			experimental	vegetação	
Deguchi et al.	2006	10.1016/J.JH YDROL.2005 .06.005	В	Toyota, Aichi Prefecture	Japão	35°02'N, 137°11'E	Abril/2000 - Dezembro/20 02	Caducifólias	The dominant trees were Quercus serrata and Clethra barbinervis
Dykes	1997	10.1016/S002 2- 1694(97)0002 3-1	В	Kuala Belalong Field Studies Centre, Temburong District	Borneo	4°32'N, 115°10'E	1/Fevereiro/19 91 - 31/Janeiro/19 95	Perenes	Mixed Dipterocarp rainforest
Gash et al.	1995	10.1016/0022- 1694(95)0269 7-N	В	Les Landes	França	44°5N, 0°5W	Fevereiro/198 6 - Janeiro/1987	Coníferas	Maritime pine (Pinus pinaster Aiton)
Germer, Elsenbeer & Moraes	2006	10.5194/hess- 10-383-2006	В	Rancho Grande, Arimeque, Rondônia	Brasil	10°18'S, 62°52'W	23/Agosto/20 04 - 02/Dezembro/ 2004 and 06/Janeiro/20 05 - 15/Abril/2005	Perenes	Open tropical rainforest with a large number of palm trees. The most common palm species in this region are Paxiuba bariguda (Iriartea deltoidea) and babassu palm (Orbignya phalerata
Herbst et al.	2008	10.1016/j.agrf ormet.2008.05 .011	В	Grimsbury Wood, Newbury,	Inglaterra	51°27'N, 1°16'W	30/Abril/2006 - 04/Março/200 7	Caducifólias	Broadleaved and coniferous stands, dominated by

Autores	Ano	DOI	Classificação	Local de	País	Coordenadas	Período	Tipo de	Espécies
				Berkshire (Leafed)			experimental	vegetação	oak (Quercus robur L.) and birch (Betula pubescens L.) trees
Holwerda et al.	2012	10.1016/j.jhyd rol.2011.07.03 3	В	Bisley 2 catchment	Puerto Rico	18°19'N, 65°44'W	1/Novembro/2 000 - 31/Outubro/20 01	Perenes	Dacryodes excelsa, Prestoa montana, Sloanea berteriana, and Cecropia peltata
Holwerda et al.	2010	10.1016/j.jhyd rol.2010.01.01 2	В	Cofre de Perote volcano	Mexico	19.4978°N, 97.0419°W	Setembro/200 6 - Agosto/2008	Caducifólias	Quercus ocoteifolia and Quercus corrugata
Link, Unsworth & Marks	2004	10.1016/J.AG RFORMET.2 004.01.010	В	Wind River Canopy Crane Research Facility	EUA	45°49'N, 121°57'W	8/Abril/1999 - 3/Dezembro/2 000	Coníferas	Douglas-fir (Pseudotsuga men-zesii), western hemlock (Tsuga heterophylla), and western redcedar (Thuja plicata)
Lloyd et al.	1988	10.1016/0168- 1923(88)9005 5-X	В	Reserva Florestal Ducke, Manaus	Brasil	2°57'S, 59°57'W	Setembro/198 3 - Agosto/1985 ²	Perenes	Many tree species
Marin et al.	2000	10.1016/S002 2- 1694(00)0030 1-2	В	Sedimentary plain rainforest	Colombia	0°39'S, 72°04'W	Dezembro/19 93 - Fevereiro/199 6	Perenes	NaN

Autores	Ano	DOI	Classificação	Local de estudo	País	Coordenadas	Período experimental	Tipo de vegetação	Espécies
Marin et al.	2000	10.1016/S002 2- 1694(00)0030 1-2	В	Low terrace rainforest	Colombia	0°40'S, 72°05'W	Dezembro/19 93 - Fevereiro/199 6	Perenes	NaN
Marin et al.	2000	10.1016/S002 2- 1694(00)0030 1-2	В	High terrace rainforest	Colombia	0°40'S, 72°06'W	Dezembro/19 93 - Fevereiro/199 6	Perenes	NaN
Marin et al.	2000	10.1016/S002 2- 1694(00)0030 1-2	В	Flood plain rainforest	Colombia	0°39'S, 72°06'W	Dezembro/19 93 - Fevereiro/199 6	Perenes	NaN
Medeiros, Araújo & Bronstert	2009		В	Aiuaba Experimental Watershed, Aiuaba, Ceará	Brasil	6°40'S, 40°15'W	Dezembro/20 03 - Maio/2006	Arbustos	xerophyte species, Leguminosae and Euphorbiacea e families
Murakami	2007	10.1016/j.jhyd rol.2007.05.03 2	В	Hitachi Ohta Experimental Watershed	Japão	36°34' N, 140°35' E	Janeiro/1999 - Dezembro/20 00	Coníferas	Japanese cypress (Chamaecypar is obtusa) and Japanese cedar (Cryptomeria japonica)
Návar & Bryan	1994	10.1016/0168- 1923(94)9003 2-9	В	Property of the Facultad de Ciencias Forestales, Nuevo León	Mexico	24°47'N, 99°32'W	Maio/1987 - Agosto/1987	Arbustos	Individual shrubs of Diospyrus texana, Acaciafarnesi ana and Prosopis laevigata

Autores	Ano	DOI	Classificação	Local de	País	Coordenadas	Período	Tipo de	Espécies
				estudo			experimental	vegetação	
Návar, Carlyle-Moses & Martinez	1999	10.1006/jare.1 998.0460	В	Property of the Facultad de Ciencias	Mexico	24°47'N, 99°32'W	Setembro/199 5 - Abril/1997	Arbustos	Tamaulipan thronscrub plant
	1000	10 101 6/000		Forestales, Nuevo León		0 40 4 5 10 4			community
Navar, Chales & Jurado	1999	10.1016/S037 8- 1127(99)0007 7-8	В	Property of the Facultad de Ciencias Forestales, Nuevo León	Mexico	24°47'N, 99°32'W	Abril/1997 - Abril/1998	Arbustos	thronscrub plant community
Saito et al.	2013	10.1016/j.jhyd rol.2013.09.05 3	В	Yayama Experimental Catchment, Fukuoka	Japão	33°31'N, 130°39'E	5/Junho/2010 - 31/Dezembro/ 2011	Coníferas	Plantation of Hinoki (Chamaecypar is obtusa) and Sugi (Cryptomeria japonica)
Shinohara et al.	2015	10.1016/j.agrf ormet.2015.08 .257	В	Yamanokami Experimental Plantation, Fukuoka	Japão	33°38' N, 130°31'E	7/Abril/2010 - 22/Julho/2011	Coníferas	Japanese cedar (Cryptomeria japonica)
Tani et al.	2003		В	Pasoh Forest Reserve	Malásia	2°58'N, 102°18'E	1/Julho/1999 - 30/Junho/200 0	Perenes	Lowland mixed Dipterocarp forest, which consists of various species of Shorea and Dipterocarpus.
Zhang et al.	2019	10.1016/j.jhyd rol.2018.11.02 4	В	Manobo reforest	Filipinas	11°17'N, 124°56'E	1/Junho/2013 - 31/Maio/2014	Perenes	Beech wood (Gmelina arborea Roxb.), mahogany (Swietenia

Autores	Ano	DOI	Classificação	Local de estudo	País	Coordenadas	Período experimental	Tipo de vegetação	Espécies
									macrophylla King)
Brown et al.	2014	10.1002/hyp.9 879	С	Utikuma Region Study Area, Alberta	Canadá	56°4' N, 115°28' W	6/Julho/2005 – 18/Outubro/20 05 and 2/Maio/2006 – 9/Outubro/200 6	Caducifólias	The dominant specie is trembling aspen (Populus tremuloides)
Bryant, Bhat & Jacobs	2005	10.1016/j.jhyd rol.2005.02.01 2	С	Fort Benning	EUA	32°23'N, 84°49'W	4/Abril/2001 - 11/Junho/200 2	Coníferas	Pinus taeda, Pinus echinata, Pinus palustris, Quercus berberidifolia, Quercus alba
Dietz, Holscher & Leuschner	2006	10.1016/j.fore co.2006.09.04 4	C	Lore Lindu National Park	Indonesia	1°30'05.0"S, 120°02'07.8"E	5/Abril/2004 - 4/Abril/2005	Perenes	Meliaceae, Lauraceae, Sapotaceae, and Fagaceae
Fan, Oestergaard, Guyot & Lockington	2014	10.1016/j.jhyd rol.2014.04.06 6	C	Banksia woodland, Queensland	Australia	26°59'04"S, 153°08'18"E	1/Maio/2012 - 30/Abril/2013	Perenes	Wallum Banksia (Banksia aemula R Br.)
Fathizadeh et al.	2017	10.1016/j.scit otenv.2017.05 .233	C	Southern Zagros forests	Irã	33°42'N, 46°22'E	Fevereiro/201 5 - Fevereiro/201 6	Caducifólias	Brant's oak
Herbst et al.	2006	10.1016/j.agrf ormet.2006.10 .012	С	Roves Farm, Swindon	Inglaterra	51°36'N, 1°42'W	21/Junho/200 4 – 12/Fevereiro/2 005	Caducifólias	Hawthorn (Crataegus monogyna L.) and field maple (Acer campestre L.)

Autores	Ano	DOI	Classificação	Local de estudo	País	Coordenadas	Período experimental	Tipo de vegetação	Espécies
Klingaman et al.	2007	10.1175/JHM 564.1	С	Fair Hill Natural Resource Management	EUA	39°42'N, 75°50'W	1/Dezembro/2 004 - 30/Abril/2005	Caducifólias	Mostly Fagus grandifolia Ehrh. (American beech)
Linhoss & Siegert	2020	10.1016/j.jhyd rol.2020.1246 24	С	Fair Hill Natural Resources Management Area, Maryland	EUA	39°42'N, 75°50'W	Janeiro/2008 – Agosto/2011	Caducifólias	Yellow-poplar (Liriodendron tulipifera L.), American beech (Fagus grandifolia Ehrh.), red maple (Acer rubrum L.), and white oak (Quercus alba
Llorens	1997	10.1016/S002 2- 1694(96)0333 5-5	C	Cal Parisa	Espanha	42°12'21.3"N, 1°48'06.7"E	Julho/1993 - Dezembro/19 95	Coníferas	Pinus sylvestris
Ma et al.	2019	10.1016/j.jhyd rol.2019.06.02 1	С	Yeheshan watershed	China	34°31.76′N, 107°54.67′E	1/Janeiro/201 6 - 31/Dezembro/ 2016	Coníferas	R. pseudoacacia and P. tabuliformis
Ma, Luo & Shao	2020	10.1016/j.jhyd rol.2020.1252 34	С	Yeheshan National Forest	China	34°31.76′N, 107°54.67′E	1/Janeiro/201 5 - 31/Dezembro/ 2015	Caducifólias	Robinia pseudoacacia
Muzylo et al.	2012	10.1002/hyp.8 401	С	Cal Barrol	Espanha	42°12N, 1°49E	20/Maio/2007 - 19/Maio/2009	Caducifólias	Mainly of downy oaks (Quercus pubescens, Willd.)

Autores	Ano	DOI	Classificação	Local de	País	Coordenadas	Período	Tipo de	Espécies
				estudo			experimental	vegetação	-
Návar	2013	10.1002/hyp.9	С	Iturbide,	Mexico	24°43′N,	Maio/1997 –	Caducifólias	The oak
		309		Nuevo Leon		99°52′W	Novembro/19		forests include
							98		Quercus
									rizophylla
									Weath.,
									Quercus
									sideroxilla
									Humb. Et
									Bonpl. Pl.,
									Quercus
									polimorfa
									Schelecht. &
									Cham. and
									Quercus
									mexicana
									Humb. Et
									Bonpl. Pl.,
									and pines are
									mostly
									composed by
									Pinus
									pseudostrobus
									Lindl.
Palán &	2018	10.1007/s4071	С	Jizera	República	50°48'21"-	Maio–	Coníferas	Norway
Křeček		0-018-0327-2		Mountains	Tcheca	50°48'59"N,	Outubro,		spruce (Picea
						15°19'34"-	2015-2017		abies)
						15°20'48"E			
Rao	1987	10.1016/0022-	С	Campus of the	India	11°15'N,	1983 - 1984	Perenes	Cashew tree
		1694(87)9007		Centre at		75°52'E			
		2-2		Kottamparam					
				ba					
Rodrigues et	2021	10.1016/j.jenv	С	Atlantic	Brasil	21°S, 45°W	Janeiro/2013 -	Caducifólias	Xylopia
al.		man.2021.112		Forest			Dezembro/20		brasiliensis,
		710		remnant			19		Copaifera
				(AFR)					langdorffii,
									Ocotea

Autores	Ano	DOI	Classificação	Local de estudo	País	Coordenadas	Período experimental	Tipo de vegetação	Espécies
									odorifera, Sclerolobium rugosum, Amaioua guianensis, and Tapiria obtusa
Staelens et al.	2008	10.1002/hyp.6 610	С	Ghent	Belgium	50°58'N, 3°49'E	17/Maio/2002 - 16/Maio/2004	Caducifólias	Pedunculate oak (Quercus robur L.) and European beech (Fagus sylvatica L.)
Valente et al.	2020	10.1016/j.jhyd rol.2019.1244 17	С	School of Agriculture of the Polytechnic Institute of Castelo Branco	Portugal	39°49'15"N, 7°27'33"W	25/Agosto/20 11 - 30/Abril/2013	Perenes	Olea europea L., cultivar Galega Vulgar
Wallace & McJannet	2008	10.1016/j.jhyd rol.2007.10.01 9	С	Hutchinson Creek, North Queensland	Australia	16° 11.5'S, 145° 24.9'E	09/Novembro/ 2001 – 30/Junho/200 4	Perenes	Complex mesophyll vine forest
Wallace & McJannet	2008	10.1016/j.jhyd rol.2007.10.01 9	С	Upper Barron, North Queensland	Australia	17° 27.1'S 145° 29.7'E	30/Novembro/ 2000 – 30/Junho/200 4	Perenes	Complex notophyll vine forest
Zhang et al.	2006	10.5194/hess- 10-65-2006	С	Shaoshan forest, Hunan province	China	27°51'N, 112°24'E	2003	Coníferas	Chinese fir (Cunninghami a lanceolata), massoniana pine (Pinus Massoniana), camphor wood

Autores	Ano	DOI	Classificação	Local de estudo	País	Coordenadas	Período experimental	Tipo de vegetação	Espécies
Asdak et al.	1998	10.1016/S002	D	Central	Indonesia	1°17'46"S,	Junho/1994 -	Perenes	(Cinnamomu m camphora) and bamboos (Phyllostachys pubescens). Dipterocarpac
		2- 1694(98)0010 8-5		Kalimantan		112°22'42"E	Junho/1995		eae, Caesalpinacea e, Euphorbiacea e and Myrtaceae.
Bigelow	2001	10.1002/hyp.2 68	D	La Selva Biological Station	Costa Rica	NaN	Dezembro/19 94 - Junho/1995	Perenes	Cedrela odorata, Hypsipela grandella and Cordia alliodora
Bittner et al.	2010		D	Hainich National Park	Alemanha	51°N, 10°E	2005-2007	Caducifólias	Mixture of broad-leaved deciduous species (F. sylvatica, T. cordata, T. platyphyllos, F. excelsior, C. betulus, A. pseudoplatanu s, A. campestre, A. platanoides and Q. robur)
Davie and Durocher	1997	10.1002/(SICI)1099- 1085(199709) 11:11<1525::	D	Leigh Woods, Bristol	Inglaterra	51°27'N, 2°38'W	1988-1989	Caducifólias	Mixed species, mainly Quercus rubra

Autores	Ano	DOI	Classificação	Local de	País	Coordenadas	Período	Tipo de	Espécies
		AID- HYP483>3.0. CO;2-S		estudo			experimental	vegetaçao	and Castanea sativa
Deng et al.	2022	10.1016/J.EC OLIND.2022. 109399	D	Magu Forest Farm	China	42°33'- 43°29'N, 123°32'- 124°26'E	2/Junho/2019 30/Setembro/2 019	Coníferas	Mongolian pine (P. sylvestris and P.
Dolman	1987	10.1016/0022- 1694(87)9016 9-7	D	Castricum	Holanda	52°33'N, 4°38'E	1983 - 1984	Caducifólias	tabuliformis) NaN
Fleischbein et al.	2005	10.1002/hyp.5 562	D	Loja	Ecuador	4°00'S79°12' W - 4°05'S78°58' W	18/Abril/1998 24/Abril/2002	Perenes	Inga (Mimosaceae) , Miconia (Melastomat- aceae), Hyeronima (Euphorbiacea e), Ficus (Moraceae), Piper (Piperaeae) and Prumnopitys montana (H&B de Laub) (Podocarpacea
Gerrits, Pfister & Savenije	2010	10.1002/hyp.7 712	D	Huewelerbach basin	Luxembourg	49°42'57.0"N, 5°53'13.0"E	Janeiro/2004 - Julho/2009	Caducifólias	Beech stand (Fagus sylvatica L)
Ghimire et al.	2012	10.1016/j.jhyd rol.2012.09.05 1	D	Jikhu Khola Catchment,	Nepal	27°35'– 27°41'N;	20/Junho/201 1 –	Perenes	evergreen mixed broad- leaf forest

Autores	Ano	DOI	Classificação	Local de estudo	País	Coordenadas	Período experimental	Tipo de vegetação	Espécies
				Middle Mountains		85°32'E- 85°41'E	9/Setembro/20 11		dominated by Schima wallichii and various chestnuts and oaks
Ghimire et al.	2012	10.1016/j.jhyd rol.2012.09.05 1	D	Jikhu Khola Catchment, Middle Mountains	Nepal	27°35'- 27°41'N; 85°32'E- 85°41'E	20/Junho/201 1 – 9/Setembro/20 11	Coníferas	Castanopsis tribuloides, Schima wallichii, Myrica esculenta, R. arboreum, Quercus lamellosa
Hall et al.	1996	10.1016/0022- 1694(95)0300 0-X	D	Upper Mahaweli catchment	Sri Lanka	NaN	28/Maio/1993	Perenes	Acacia auriculiformis and Tectona grandis
He et al.	2014	10.1016/j.agrf ormet.2013.12 .008	D	Qinghai spruce forest, Qilian Mountains	China	NaN	Junho/2011 - Outubro/2012	Coníferas	P. crassifolia
Huitao et al.	2012	10.1002/hyp.8 251	D	Tiantong National Forest Park	China	29°52'N,121° 39'E	01/Março/200 9 - 31/Outubro/20 09	Perenes	Castanopsis fargesii
Hutchings, Milne & Crowther	1988	10.1016/0022- 1694(88)9016 3-1	D	Forestry Commission Rivox plantation, Greskine Forest	Escócia	NaN	NaN	Coníferas	Sitka spruce [Picea sitchensis (Bong.) Carr.]

Autores	Ano	DOI	Classificação	Local de	País	Coordenadas	Período	Tipo de	Espécies
	1000	10.101.6/00.00		estudo	<u> </u>		experimental	vegetação	
Hutjes et al.	1990	10.1016/0022-	D	Tai National	Costa do	5°51'10"N,	04/Agosto/19	Perenes	transitionary
		1694(90)9006		Park, Tai	Marfim	7°20°20″W	8/-		between
		0-B					20/Dezembro/		aseasonal
							1987		evergreen
									forest with
									Diospyros
									spp. and
									Mapania spp.
									and a seasonal
									type with
									Eremospatha
									macrocarpa
									and Diospyros
-	1005	10.1000//0101		— 1	a		1/0 1 //00	5	mannıı
Jetten	1996	10.1002/(SICI	D	Tropenbos	Guyana	NaN	I/Outubro/199	Perenes	Dominated by
)1099-		Ecological			l -		Eperua falcata
		1085(199605)		Reserve			I/Dezembro/I		and E.
		10:5<6/1::AI					991 and		grandijlora,
		D-					12/Dezembro/		and mixed
		HYP310>3.0.					1991 -		forest
		CO;2-A					14/Fevereiro/1		(Chlorocardiu
							993		m rodiei,
									Eschweilera
									sagotiana,
									Mora
									gonggreipii
									and Dycimbe
T 1	2010	10 1005/ 11/5	P			250151	CD 4 : 10015	G (1	altson11)
Liu et al.	2018	10.1007/s1167	D	National	China	35°15'-	6/Maio/2015 -	Coniferas	Larch
		6-017-0407-6		Natural		35°41'N,	31/Outubro/20		plantation
				Reserve of the		106°09'-	15		
				Liupan		106°30'E			
N.C. 1 11 T	2012	10 1000/ 0	D	Mountains	A / 1*	2604110	N : /2000	F 1 /	F 1 /
Mitchell, Lane	2012	10.1002/eco.2	D	Buffalo River	Australia	36°41'S,	Maio/2009 -	Eucalyptus	Eucalyptus
& Benyon		55				146°39'E	Abril/2010		radiata,
									Eucalyptus

Autores	Ano	DOI	Classificação	Local de estudo	País	Coordenadas	Período experimental	Tipo de vegetação	Espécies
									dives, Eucalyptus macrorhyncha , Eucalyptus viminalis, and Eucalyptus rubida
Moreno-Pérez et al.	2018		D	El Cabril, Córdoba	Espanha	38°4'N, 5°25'W	Outubro/2010 - Junho/2014 and Setembro/201 3 - Junho/2014	Perenes	Pinus pinea and Cistus ladanifer
Nunes et al.	2016	10.1002/hyp.1 0629	D	Eucalypt plantation	Portugal	NaN	Janeiro/2010 - Outubro/2012	Eucalyptus	Eucalyptus globulus Labill.
Panahandeh et al.	2022	10.1016/j.jhyd rol.2022.1280 92	D	Hyrcanian forest	Irã	36°-37°N, 51°-55°E	Maio/2012 - Março/2014	Coníferas	Mixed foresty with Coniferousous (Pinus brutia and Picea abies), deciduous (Acer velutinum), and evergreen (Cupressus sempervirens L. var horizontalis)
Sadeghi et al.	2014	10.3906/tar- 1312-53	D	Chitgar Forest Park	Irã	35°42′N, 51°08′E	30/Janeiro/20 11 - 30/Janeiro/20 12	Coníferas	P. eldarica or C. arizonica
Autores	Ano	DOI	Classificação	Local de	País	Coordenadas	Período	Tipo de	Espécies
---	------	---	---------------	---	-------------	---	--	--------------	---
				estudo			experimental	vegetação	
Sadeghi et al.	2018	10.1007/s1034 2-017-1098-4	D	Chitgar Forest Park	Irã	35°10'– 35°43'N, 51°10'– 51°12'E	16/Março/201 3 - 12/Abril/2016	Caducifólias	R. pseudoacacia and P. orientalis
Sadeghi et al. (a)	2015		D	Chitgar Forest Park	Irã	35°10'N 51°10'E	1/Setembro/20 12 - 25/Maio/2013	Caducifólias	F. rotundifolia
Sadeghi et al. (b)	2015	10.1016/j.agrf ormet.2014.10 .006	D	Chitgar Forest Park	Irã	35°42'N, 51°08'E	23/Agosto/20 12 - 23/Agosto/20 13	Coníferas	P. eldarica, C. arizonica
Sadeghi, Attarod, Van Stan & Pypker	2015	10.1016/j.agrf ormet.2014.10 .006	D	Chitgar Forest Park, Tehran	Irã	35°42′ N, 51°08′ E	23/Agosto/20 12 - 23/Agosto/20 13	Coníferas	Pinus eldarica (Eldar pine) and Cupressus arizonica (Arizona cypress).
Schellekens et al.	1999	10.1016/S002 2- 1694(99)0015 7-2	D	Bisley II catchment, Luquillo Experimental Forest	Puerto Rico	18°18' N, 65°50' W	5/Maio/1996 - 9/Julho/1996	Perenes	Covered with Tabonuco (Dacryodes excelsa) type forest.
Sraj et al.	2008	10.1016/j.agrf ormet.2007.09 .007	D	Dragonja watershed	Eslovênia	NaN	5/Outubro/200 0 - 12/Setembro/2 001	Caducifólias	The vegetation mostly consists of pubescent oak, Karst ash tree (Fraxinus excelsior), sessile oak, hop hornbeam, maple and among shrub species

Autores	Ano	DOI	Classificação	Local de estudo	País	Coordenadas	Período experimental	Tipo de vegetação	Espécies
									dogwood (Cornus sanguinea)
Steidle Neto et al.	2012	10.5849/forsci .09-120	D	Belo Oriente, Minas Gerais	Brasil	19°18'23"S, 42°22'46"W	Outubro/???? - Março/????	Eucalyptus	Eucalyptus grandis and Eucalyptus urophylla
Sun et al.	2022	10.1002/hyp.1 4538	D	Dashanchong Forest Park	China	28°23'58"– 28°24058"N, 113°17'46"– 113°19'08"E	Maio/2017 - Abril/2019	Perenes	Conifer P. massoniana (PM), deciduous C. axillaris (CA) forest, and evergreen broadleaved L. glaber (LG)
Sun et al.	2013	10.3906/tar- 1207-36	D	Mt. Gongga	China	29°20'– 30°20'N, 101°30'– 102°15'E	Maio/2009 - Outubro/2009	Coníferas	Abies fabri
Sun et al.	2014	10.1007/s1031 0-013-0421-2	D	Mt. Karasawa	Japão	NaN	Julho/2011 - Outubro/2011	Coníferas	Japanese cypress
Sun et al.	2017	10.1016/j.fore co.2017.07.03 6	D	Multiple sites	Japão	30°-40°N, 130-140°E	Nov/2010 - Dec/2013	Coníferas	Japanese cypress or Japanese cedar plantation
Teklehaimano t & Jarvis	1991	10.2307/2404 571	D	Cloich	Escócia	NaN	NaN	Coníferas	Spruce tree (Picea sitchens)
Wallace et al.	2013	10.1016/j.jhyd rol.2013.06.03 6	D	Jarrah forests	Australia	NaN	Janeiro/2008 - Dezembro/20 08 and Janeiro/2008 -	Eucalyptus	Eucalyptus marginata

Autores	Ano	DOI	Classificação	Local de estudo	País	Coordenadas	Período experimental	Tipo de vegetação	Espécies
							Dezembro/20 09		
Wei et al.	2020	10.1016/j.jhyd rol.2020.1252 32	D	Yangdongsha n and Shierdushui Provincial Natural Reserve	China	NaN	2009 - 2014	Perenes	Daphniphyllu m macropodum, Castanopsis carlesii, Castanopsis eyrei, and Castanopsis fordii
Whitehead & Kelliher	1991	10.1016/0168- 1923(91)9002 5-L	D	Longmile, Rotorua	Nova Zelândia	38°10' S, 176°16' E	1983 - 1985	Coníferas	Stand of Pinus radiata D. Don
Carlyle- Moses, Park & Cameron	2010	10.1002/eco.1 05	Ε	Soberania National Park	Panamá	9°10'N, 79°35'W	23/Julho/2006 20/Setembro/2 006	Perenes	Acacia mangium Willd., Gliricidia sepium Jacq., Guazuma ulmifolia Lam., Ochroma pyramidale Swartz and Pachira quinata (Jacq.) W.S. Alverson
Dunin et al.	1988	10.1002/hyp.3 360020403	Е	Kioloa State Forest	Australia	35°33'S, 150°22'E	Março/1982 - Fevereiro/198 5	Eucalyptus	Spotted gum (Eucalyptus rnaculata) and stringybark (E. globoidea)

Autores	Ano	DOI	Classificação	Local de	País	Coordenadas	Período	Tipo de	Espécies
Liu et al.	2018	10.1007/s1167 6-017-0407-6	E	Xiangshuihe watershed	China	35°41'N, 106°30'E	6/Maio/2015 - 31/Outubro/20 15	Coníferas	Larix principis-rup- prechtij Mayr.
Manfroi et al.	2006	10.1016/j.jhyd rol.2006.02.02 0	Ε	Lambir Hills National Park, Sarawak	Malásia	4°12N, 114°02E	01/Julho/2001 - 17/Julho/2004	Perenes	Euphorbiacea e and Dipterocarpac eae families
Shuttleworth	1988	10.1098/rspb. 1988.0024	Е	Ducke Reserve, Manaus	Brasil	2°57'S, 59°57'W	Setembro/198 3 - Setembro/198 5	Perenes	NaN
Waterloo et al.	1999	10.1029/1999 WR900006	Ε	Nabou forest	Fiji	18°00' S , 177°27'E	30/Novembro/ 1989 - 23/Abril 23/1990; 8/Maio/1990 - 27/Novembro/ 1990; 27/Abril/1991 - 20/Setembro/1 991	Coníferas	Pinus caribae
Ziegler et al.	2009	10.1016/j.agrf ormet.2008.09 .002	Ε	Pang Khum Experimental Watershed	Tailândia	19°03'N, 98°39'E	21/Junho/200 2 - 7/Outubro/200 2	Perenes	Wendlandia tinctoria (Roxb.) DC. (Rubiaceae), Stryax benzoides Craib (Styracaceae), Castanopsis tribuloides (Sm.) A. DC. (Fagaceae)

Autores	Ano	DOI	Classificação	P_g (mm)	$\bar{R} (\operatorname{mm} \mathbf{h}^{-1})$	Ē (mm h ⁻¹)	Ē / Ē	Interceptação (mm por área	LAI	С	S (mm)	S_t (mm)	S_{ν} (mm)	Altura (m)
								de solo)						
Bulcock & Jewitt	2012	10.5194/ hess-16- 4693- 2012	A	1884,7	NaN	NaN	NaN	522,40	2,3	NaN	1,070	NaN	1,070	NaN
Carlyle- Moses & Price	1999	10.1016/ S0022- 1694(98))00274- 1	A	213,8	3,60	0,32	0,09	41,20	NaN	0,84	1,000	0,093	1,093	13,5
Carlyle- Moses & Price	2007	10.1002/ hyp.679 0	А	691,8	2,06	0,17	0,08	109,30	NaN	0,499	0,389	0,013	0,402	NaN
Chen e Li	2016	10.3390/ w80100 14	А	917,6	NaN	0,4	NaN	46,80	3,43	0,429	1,385	NaN	1,385	NaN
Cuartas et al.	2007	10.1016/ j.agrfor met.200 7.04.008	A	4829,2	7,1	0,32	0,05	505,59	6,1	0,969	1,049	0,060	1,109	30
Domingo et al.	1998	10.1016/ S0168- 1923(98))00068- 9	A	92	NaN	NaN	NaN	27,60	NaN	NaN	1,510	NaN	1,510	2,33
Fan, Oestergaar d, Guyot & Lockingto n	2014	10.1016/ j.jhydrol .2014.04 .066	A	1492,1	3,02	0,22	0,07	342,80	2,05	0,53	1,310	0,066	1,376	13,34
Ghimire et al.	2017	10.1016/ j.jhydrol .2016.10 .032	А	1747	1,6	0,07	0,04	476,00	3,39	0,7	1,200	0,095	1,295	19

APÊNDICE B – DADOS CLIMATOLÓGICOS E DE VEGETAÇÃO

Autores	Ano	DOI	Classificação	P_g (mm)	$\bar{R} (\text{mm h}^{-1})$	<i>Ē</i> (mm h ⁻¹)	\bar{E}/\bar{R}	Interceptação (mm por área	LAI	с	S (mm)	S_t (mm)	S_{ν} (mm)	Altura (m)
					,)		de solo)			()	()	()	(111)
Ghimire et al.	2017	10.1016/ j.jhydrol .2016.10 .032	A	1629	1,6	0,05	0,03	292,00	1,83	0,55	0,470	0,130	0,600	5
Hassan, Guimire & Lubczynsk i	2017	10.1016/ j.jhydrol .2017.08 .016	А	1007	1,67	0,037	0,02	329,13	2,1	0,69	1,750	NaN	1,750	7,2
Hassan, Guimire & Lubczynsk i	2017	10.1016/ j.jhydrol .2017.08 .016	A	1007	1,97	0,043	0,02	30,94	1,6	0,26	0,660	NaN	0,660	7,6
Hölscher et al.	2004	10.1016/ j.jhydrol .2004.01 .015	А	2150	2,1	NaN	NaN	611,00	7,7	NaN	2,230	NaN	2,230	25
Hörmann et al.	1996	10.1016/ 0168- 1923(95))02275- 9	A	1738	1,70	0,03	0,02	116,30	NaN	0,575	1,06	0,185	1,245	27
Jeong et al.	2022	10.3390/ f130506 57	А	1068,4	2,84	0,23	0,08	317,45	NaN	0,994 5	3,595	0,885	4,480	14,05
Junqueira Junior et al.	2019	10.1016/ j.agrfor met.201 9.05.016	А	3225	2,76	0,1	0,04	389,20	4,23	0,825	1,287	0,619	1,906	10,2
Lankreijer et al.	1999	10.1016/ S0168- 1923(99))00126- 4	A	179	NaN	0,04	NaN	46,00	4,5	0,6	1,770	NaN	1,770	28
Lankreijer et al.	1993	10.1016/ 0168-	А	310,9	1,835	0,245	0,13	60,80	4,9	0,69	0,600	NaN	0,600	17,25

Autores	Ano	DOI	Classificação	P_{g} (mm)	\bar{R} (mm h ⁻	$ar{E}$ (mm	Ē/	Interceptação	LAI	С	S	St	Sv	Altura
					1)	h ⁻¹)	Ŕ	(mm por área			(mm)	(mm)	(mm)	(m)
		1002(02						de solo)						
		1923(93												
)90028- G												
Li Cai	2015	10 1007/	А	825.47	NaN	NaN	NaN	182.25	1 37	NaN	0.99	0.000	0.990	16
Man.	2015	s40333-	11	023,17	ituit	1 (ui (11411	102,25	1,57	i (ui (0,77	0,000	0,770	10
Sheng &		015-												
Ju		0013-4												
Li, Zhang	2021	10.2166/	А	471,5	1,89	0,04	0,02	84,86	NaN	0,76	2,438	0,225	2,663	8,24
& Niu		nh.2021.												
		085												
Liang	2014	10.5424/	А	209,98	3,40	0,19	0,10	62,62	NaN	NaN	2,680	1,220	3,900	12,4
		fs/20142												
		32-												
Limousin	2008	03410	•	1605	0.88	0.45	0.51	405.05	2.1	0.0	2 600	0.080	2 5 8 0	5 5
Linousin, Pambal	2008	10.1010/	A	1005	0,88	0,45	0,51	493,95	5,1	0,9	2,000	0,980	5,580	5,5
Qurcival &		2008.05												
Joffre		.001												
Loescher	2005	10.1016/	А	11197	NaN	NaN	NaN	NaN	4,5	0,975	1,530	NaN	1,530	22,5
et al.		j.jhydrol							,	<i>,</i>	,		,	,
		.2005.03												
		.040												
Lopes et	2020	10.1016/	А	429,5	3,5	0,23	0,07	67,72	1,7	0,57	1,778	NaN	1,778	5,2
al.		j.jhydrol												
		.2020.12												
T i i	1002	5497		740 7	1.44	0.16	0.11	1.40.00	NT NT	0.400	0.500	0.070	0.502	10.6
Loustau et	1992	10.1016/	А	/49,/	1,44	0,10	0,11	140,00	Inain	0,423	0,523	0,070	0,593	12,6
al.		1604(02												
)90131-												
		E												
Motahari	2013		А	164,8	NaN	NaN	NaN	61,20	NaN	0,9	1,800	NaN	1,800	11
et al.				,				,		<i>,</i>				
Pereira et	2009	10.1016/	А	528,7	2,2	0,27	0,12	32,91	2,6	0,210	1,600	NaN	1,600	7,3
al.		j.agrfor												

Autores	Ano	DOI	Classificação	P_g (mm)	\bar{R} (mm h ⁻	\bar{E} (mm	Ē/	Interceptação	LAI	с	S	S_t	S_{ν}	Altura
					1)	h -1)	R	(mm por área de solo)			(mm)	(mm)	(mm)	(m)
		met.200												
		8.10.014												
Pypker et	2005	10.1016/	А	418,73	NaN	NaN	0,18	88,31	10,2	0,89	1,400	NaN	1,400	20
al.		j.agrfor												
		met.200												
		5.03.003												
Pypker et	2005	10.1016/	А	NaN	NaN	NaN	0,17	NaN	9,6	0,77	3,320	NaN	3,320	52,2
al.		j.agrfor												
		met.200												
	0014	5.03.003		1.5.4		0.45		702 00		0.50	1.0.40	0.004	1.074	
Ringgaard,	2014	10.1016/	A	1761	NaN	0,17	NaN	582,89	NaN	0,72	1,040	0,034	1,074	NaN
Herbst &		j.jhydrol												
Friborg		.2014.06												
Shi at al	2010	.007	^	544.6	2	0.17	0.00	77.00	4.52	0.64	2 860	0.047	2 007	11.5
Sill et al.	2010	i ibydrol	A	544,0	2	0,17	0,09	77,00	4,32	0,04	2,800	0,047	2,907	11,5
		2010.02												
		.003												
Su et al.	2016	10.1002/	А	1574	2.68	0.22	0.08	225,50	3.1	0.85	2.240	0.093	2.333	8
		eco.174			y	- /	- ,	- ,	- 1	- ,	, -	- ,	,	-
		9												
Távora &	2020	10.3390/	А	687,8	NaN	NaN	0,20	169,90	NaN	0,83	1,370	NaN	1,370	10
Koide		w12082												
		128												
Tu et al.	2021	10.1002/	А	1701	3,08	0,24	0,08	241,20	4,5	0,75	2,140	0,128	2,268	13,4
		eco.228												
		3								0.10				
Valente et	1997	10.1016/	A	1545,8	1,814	0,2	0,11	166,80	3,2	0,60	0,210	0,016	0,226	16,5
al.		S0022-												
		1694(96												
		105000-												
Valente et	1007	10 1016/	Δ	1366.2	1 7/3	0.315	0.18	233.70	27	0.64	0.410	0.017	0.427	23.9
al	1771	S0022-	1	1500,2	1,743	0,315	0,10	233,10	∠,/	0,04	0,410	0,017	0,427	23,9
		1694(96												

Autores	Ano	DOI	Classificação	P_g (mm)	\bar{R} (mm h ⁻	$ar{E}$ (mm	\bar{E} /	Interceptação	LAI	С	S	S_t	Sv	Altura
					1)	h ⁻¹)	Ŕ	(mm por área de solo)			(mm)	(mm)	(mm)	(m)
)03066- 1												
Vernimme n, Bruijnzeel, Romdoni & Proctor	2007	10.1016/ j.jhydrol .2007.04 .009	A	3134,2	6,9	0,06	0,01	471,00	6,67	0,86	1,04	0,025	1,068	40
Wallace & McJannet	2008	10.1016/ j.jhydrol .2007.10 .019	А	4077	4,6	0,35	0,08	1039,00	4,20	0,965	3,600	0,150	3,750	27
Wallace & McJannet	2008	10.1016/ j.jhydrol .2007.10 .019	A	3203	3,2	0,46	0,14	1105,00	4,50	0,972	3,600	0,150	3,750	32
Wallace & McJannet	2008	10.1016/ j.jhydrol .2007.10 .019	A	1215	3,3	0,55	0,17	463,00	4,10	0,962	2,900	0,150	3,050	12
Whelan & Anderson	1996	10.1016/ S0022- 1694(96))03020- X	A	382	NaN	NaN	NaN	NaN	NaN	NaN	3,700	NaN	3,700	17,5
Zhang et al.	2018	10.1002/ eco.201 1	А	531	0,6	0,09	0,15	103,90	2,73	0,62	0,360	0,341	0,701	0,35
Aboal et al.	1999	10.1016/ S0168- 1923(99))00083- 0	В	323	1,64	0,042	0,03	138,80	7,8	0,93	2,450	0,080	2,530	15,5
Buttle & Farnsworth	2012	10.1016/ j.jhydrol	В	1387	2	NaN	NaN	127,24	2,82	0,76	0,887	0,092	0,979	16

Autores	Ano	DOI	Classificação	P_g (mm)	\bar{R} (mm h ⁻	$ar{E}$ (mm	Ē/	Interceptação	LAI	С	S	S_t	S_{ν}	Altura
					1)	h ⁻¹)	Ŕ	(mm por área			(mm)	(mm)	(mm)	(m)
		2012.08						de solo)						
		.2012.08												
Chen et al.	2013	10.3390/	В	1576,4	NaN	NaN	NaN	524,00	2,07	0,85	1,020	0,830	1,850	NaN
		w80100												
		14								0.10				
Deguchi et	2006	10.1016/	В	3857,2	1,87	0,23	0,12	648,90	3,05	0,68	1,070	0,000	1,070	12
ai.		ROL 20												
		05.06.00												
		5												
Dykes	1997	10.1016/	В	826,1	5,54	0,71	0,13	149,00	NaN	0,95	1,000	0,100	1,100	35
		S0022-												
)00023-												
		1												
Gash et al.	1995	10.1016/	В	613	1,65	0,08	0,05	73,00	2,3	0,45	0,250	0,170	0,420	20,3
		0022-												
		1694(95												
)02097- N												
Germer,	2006	10.5194/	В	1307,9	6,66	0,20	0,03	31,10	4,6	0,97	0,718	0,220	0,938	35
Elsenbeer		hess-10-							-			-		
& Moraes		383-												
Harbet at	2008	2006	D	772.1	1 475	0 105	0.12	102.20	2.0	0.62	0.005	0 160	1.065	22
al.	2008	i.agrfor	Б	773,1	1,475	0,195	0,15	192,20	3,9	0,02	0,905	0,100	1,005	22
un		met.200												
		8.05.011												
Holwerda	2012	10.1016/	В	2420	NaN	NaN	0,20	474,00	6,7	0,77	0,370	0,014	0,384	20
et al.		j.jhydrol												
		.2011.07												
Holwerda	2010	10.1016/	В	6367	4,95	NaN	NaN	1161,00	6,3	0,82	3,330	NaN	3,330	27
et al.		j.jhydrol			,			<i>,</i>	,	,			, .	

Autores	Ano	DOI	Classificação	P_{g} (mm)	\bar{R} (mm h ⁻	Ē (mm	$ar{E}$ /	Interceptação	LAI	с	S	St	S_{v}	Altura
					1)	h ⁻¹)	Ŕ	(mm por área de solo)			(mm)	(mm)	(mm)	(m)
		.2010.01												
Link, Unsworth & Marks	2004	10.1016/ J.AGRF ORMET .2004.01 .010	В	1069,6	NaN	NaN	NaN	257,70	8,6	0,36	3,300	NaN	3,300	60
Lloyd et al.	1988	10.1016/ 0168- 1923(88))90055- X	В	4804	5,15	0,21	0,04	428,00	6,6	0,92	0,740	0,150	0,890	35
Marin et al.	2000	10.1016/ S0022- 1694(00)00301- 2	В	3273,8	5,46	0,342	0,06	321,79	4,4	0,83	1,160	NaN	1,160	27
Marin et al.	2000	10.1016/ S0022- 1694(00)00301- 2	В	3293	5,46	0,447	0,08	341,70	4,9	0,85	1,280	NaN	1,280	27
Marin et al.	2000	10.1016/ S0022- 1694(00)00301- 2	В	3158,4	5,46	0,412	0,08	359,13	5,6	0,88	1,320	NaN	1,320	27
Marin et al.	2000	10.1016/ S0022- 1694(00)00301- 2	В	3120,9	5,46	0,677	0,12	492,57	6,6	0,92	1,550	NaN	1,550	27
Medeiros, Araújo & Bronstert	2009		В	1658	8,69	1,05	0,12	215,54	NaN	0,74	0,510	0,070	0,580	5

Autores	Ano	DOI	Classificação	P_g (mm)	\bar{R} (mm h ⁻	Ē (mm	\bar{E} /	Interceptação	LAI	с	S	St	Sv	Altura
					1)	h ⁻¹)	Ŕ	(mm por área			(mm)	(mm)	(mm)	(m)
Murakami	2007	10.1016/ j.jhydrol .2007.05 .032	В	3038,3	1,57	0,27	0,17	576,50	4,5	0,875	0,425	0,160	0,585	6
Návar & Bryan	1994	10.1016/ 0168- 1923(94) 90032- 9	В	243,56	13,52	2,95	0,22	51,04	NaN	0,75	0,870	0,024	0,894	4,47
Návar, Carlyle- Moses & Martinez	1999	10.1006/ jare.199 8.0460	В	651	18,08	2,52	0,14	91,50	NaN	0,85	0,460	0,043	0,503	1,49
Návar, Chales & Jurado	1999	10.1016/ S0378- 1127(99))00077- 8	В	489,1	14,83	2,637	0,18	53,42	NaN	0,58	0,133	0,135	0,268	2,75
Saito et al.	2013	10.1016/ j.jhydrol .2013.09 .053	В	4284	NaN	NaN	NaN	729,00	3,25	0,971 5	2,065	NaN	2,065	19,7
Shinohara et al.	2015	10.1016/ j.agrfor met.201 5.08.257	В	1151	1,70	0,16	0,10	285,10	3,6	0,917 5	1,085	0,517	1,602	26,35
Tani et al.	2003		В	2262,3	NaN	NaN	NaN	381,30	6,52	0,92	1,500	NaN	1,500	35
Zhang et al.	2019	10.1016/ j.jhydrol .2018.11 .024	В	1335	5	0,7	0,14	220,00	4,8	0,7	0,450	0,077	0,527	7,6
Brown et al.	2014	10.1002/ hyp.987 9	С	923	NaN	NaN	NaN	89,00	1,45	NaN	NaN	NaN	NaN	16,55

Autores	Ano	DOI	Classificação	P_g (mm)	\bar{R} (mm h ⁻	\bar{E} (mm	Ē / Ē	Interceptação	LAI	С	S (mm)	S_t	S_{ν}	Altura
)	п)	Λ	(initi por area de solo)			(IIIII)	(mm)	(mm)	(111)
Bryant, Bhat & Jacobs	2005	10.1016/ j.jhydrol .2005.02 .012	С	752,8	2,03	0,1	0,05	107,00	NaN	0,64	1,970	0,130	2,100	10,44
Dietz, Holscher & Leuschner	2006	10.1016/ j.foreco. 2006.09. 044	C	1828	3,4	NaN	NaN	396,68	6,2	NaN	NaN	NaN	NaN	NaN
Fan, Oestergaar d, Guyot & Lockingto n	2014	10.1016/ j.jhydrol .2014.04 .066	С	1492,1	3,02	0,19	0,06	245,00	2,33	0,48	0,450	0,021	0,471	6,82
Fathizadeh et al.	2017	10.1016/ j.scitote nv.2017. 05.233	С	822,8	NaN	NaN	NaN	84,2	1,2	0,376	0,970	0,090	1,060	11,3
Herbst et al.	2006	10.1016/ j.agrfor met.200 6.10.012	С	591	1,62	0,235	0,15	245,00	4,7	0,685	1,890	0,01	1,90	NaN
Klingaman et al.	2007	10.1175/ JHM564 .1	С	329	NaN	0,05	NaN	19	NaN	0,7	1,036	0,090	1,126	27,8
Linhoss & Siegert	2020	10.1016/ j.jhydrol .2020.12 4624	C	NaN	NaN	NaN	NaN	NaN	5,5	NaN	NaN	NaN	NaN	27,8
Llorens	1997	10.1016/ S0022- 1694(96))03335- 5	С	NaN	3,83	0,47	0,12	98,00	NaN	0,875	1,340	0,060	1,400	10
Ma et al.	2019	10.1016/ j.jhydrol	С	510	1,325	0,045	0,09	105,65	1,41	0,48	0,770	0,063	0,833	9,6

Autores	Ano	DOI	Classificação	P_{g} (mm)	\bar{R} (mm h ⁻	Ē (mm	Ē/	Interceptação	LAI	с	S	St	S_{ν}	Altura
			-	-	1)	h ⁻¹)	Ŕ	(mm por área			(mm)	(mm)	(mm)	(m)
								de solo)						
		.2019.06												
	2020	.021		702.0	1 1 2 5	0.045	0.15	107.00	1.50	0.54	0.005	0.000	0.077	11.6
Ma, Luo &	2020	10.1016/	С	732,2	1,125	0,065	0,17	127,80	1,59	0,54	0,895	0,082	0,977	11,6
Shao		2020 12												
		5234												
Muzvlo et	2012	10.1002/	С	956.6	1.795	0.31	0.17	142.50	NaN	0.495	0.330	0.050	0.380	13.5
al.		hvp.840	-	,.	_,	- ,	•,	,		-,	-)	.,	0,200	,-
		1												
Návar	2013	10.1002/	С	1090,3	12,65	1,05	0,08	181,1	1,45	0,95	1,030	0,004	1,034	NaN
		hyp.930												
		9												
Palán &	2018	10.1007/	С	1987	2,18	0,21	0,10	311,33	NaN	0,78	1,700	NaN	1,700	23
Krecek		s40/10-												
		018-												
Rao	1987	10 1016/	С	629.1	1.26	0.19	0.15	193 40	11	0.609	0.8	NaN	0.800	NaN
Ruo	1707	0022-	C	029,1	1,20	0,17	0,15	195,10	1,1	0,007	0,0	i (ui (0,000	1 (41)
		1694(87												
)90072-												
		2												
Rodrigues	2021	10.1016/	С	7303	1,78	0,11	0,06	NaN	4,35	0,72	1,220	0,029	1,249	NaN
et al.		j.jenvma												
		n.2021.1												
Staelens et	2008	10 1002/	C	1447.8	0.69	NaN	NaN	304.7	17	NaN	NaN	NaN	NaN	NaN
al.	2000	hvp.661	C	1447,0	0,05	14414	14414	504,7	ч,7	India	11411	India	Inain	11011
		0												
Valente et	2020	10.1016/	С	1358,7	1,954	0,224	0,11	245,00	3,1	0,194	0,972	0,086	1,058	4,9
al.		j.jhydrol												
		.2019.12												
		4417	-											
Wallace &	2008	10.1016/	С	3567	4	0,45	0,11	900,00	3,80	0,949	2,000	0,150	2,150	27
McJannet		j.jhydrol												

Autores	Ano	DOI	Classificação	P_g (mm)	\bar{R} (mm h ⁻	Ē (mm	\bar{E} /	Interceptação	LAI	с	S	St	S_{v}	Altura
					1)	h ⁻¹)	Ē	(mm por área			(mm)	(mm)	(mm)	(m)
								de solo)						
		.2007.10												
		.019	~									0.4.70		
Wallace &	2008	10.1016/	С	1252	3,9	0,81	0,21	418,00	4,10	0,96	2,700	0,150	2,850	25
McJannet		J.Jhydrol												
		.2007.10												
Thong of	2006	.019	C	1226	5.2	0.70	0.15	184.00	NoN	0.82	1.4	0.16	1 560	20
	2000	10.3194/	C	1220	3,5	0,79	0,15	184,00	Inain	0,82	1,4	0,10	1,300	20
ai.		65 2006												
Asdak et	1008	10 1016/	D	3563	NaN	NaN	NaN	219.00	NaN	NaN	NaN	NaN	NaN	17.5
al	1990	S0022-	D	5505	INAIN	Indin	INAIN	219,00	Inain	Indin	Indin	Inain	Inain	47,5
ui.		1694(98												
)00108-												
		5												
Bigelow	2001	10.1002/	D	3156	NaN	NaN	NaN	242,67	NaN	NaN	1,433	NaN	1,433	9,18
e		hyp.268						,			<i>,</i>		,	,
Bittner et	2010		D	1957	NaN	NaN	NaN	729,33	6,83	0,87	0,842	NaN	0,842	NaN
al.														
Davie and	1997	10.1002/	D	NaN	NaN	NaN	NaN	NaN	5,38	NaN	0,20	1,900	2,100	NaN
Durocher		(SICI)10												
		99-												
		1085(19												
		9709)11												
		:11<152												
		5::AID-												
		HYP483												
		>3.0.00												
Deng et al	2022	,2-3	D	260.5	4.2	0.32	0.08	84.30	1 8/15	0.6	0.960	0.120	1.080	NaN
Delig et al.	2022		D	200,5	4,2	0,32	0,08	84,30	1,043	0,0	0,900	0,120	1,000	Inain
		ND 202												
		2 10939												
		9												
Dolman	1987	10.1016/	D	952,1	1,32	0,215	0,16	246,90	NaN	0,45	0,550	NaN	0,550	9,6
		0022-		7	y-	-, -	- , ,	- 7		- 7 -	- ,		- ,	- 7 -

Autores	Ano	DOI	Classificação	P_g (mm)	$\bar{R} (\text{mm h}^{-1})$	<i>Ē</i> (mm h ⁻¹)	Ē / Ē	Interceptação (mm por área	LAI	с	S (mm)	S_t (mm)	S_{v} (mm)	Altura (m)
					,	n)	1	de solo)			(11111)	(11111)	(1111)	(111)
		1694(87)90169- 7												
Fleischbei n et al.	2005	10.1002/ hyp.556 2	D	8191	1,11	NaN	NaN	3194,49	7,255	0,37	2,460	0,090	2,550	NaN
Gerrits, Pfister & Savenije	2010	10.1002/ hyp.771 2	D	NaN	NaN	NaN	NaN	NaN	4,5	NaN	0,650	NaN	0,650	35
Ghimire et al.	2012	10.1016/ j.jhydrol .2012.09 .051	D	709	3,01	0,25	0,08	159,00	NaN	0,81	0,890	0,020	0,910	14
Ghimire et al.	2012	10.1016/ j.jhydrol .2012.09 .051	D	878	3,58	0,3	0,08	145,00	NaN	0,73	0,670	0,033	0,703	16,3
Hall et al.	1996	10.1016/ 0022- 1694(95))03000- X	D	18	NaN	NaN	NaN	NaN	NaN	0,93	NaN	NaN	2,200	NaN
He et al.	2014	10.1016/ j.agrfor met.201 3.12.008	D	571,3	NaN	NaN	NaN	200,53	NaN	NaN	1,160	NaN	1,160	NaN
Huitao et al.	2012	10.1002/ hyp.825 1	D	1384	NaN	NaN	NaN	235,28	2,8	NaN	NaN	NaN	NaN	25
Hutchings, Milne & Crowther	1988	10.1016/ 0022- 1694(88))90163- 1	D	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2,000	NaN	2,000	10,14

Autores	Ano	DOI	Classificação	P_g (mm)	\bar{R} (mm h ⁻	\bar{E} (mm	\bar{E}/\bar{n}	Interceptação	LAI	С	S	S_t	S_{ν}	Altura
					-)	n'')	R	(mm por area de solo)			(mm)	(mm)	(mm)	(m)
Hutjes et al.	1990	10.1016/ 0022- 1694(90) 90060- B	D	1021,9	20	0,34	0,02	94,01	NaN	0,97	0,610	NaN	0,610	26
Jetten	1996	10.1002/ (SICI)10 99- 1085(19 9605)10 :5<671:: AID- HYP310 >3.0.CO ;2-A	D	2289,33	NaN	NaN	NaN	355,67	NaN	0,92	0,890	NaN	0,890	35
Liu et al.	2018	10.1007/ s11676- 017- 0407-6	D	499	2,51	0,049	0,02	86,70	NaN	0,73	2,670	0,662	3,332	18,15
Mitchell, Lane & Benyon	2012	10.1002/ eco.255	D	1196	1,8	0,4	0,22	NaN	1,4	NaN	0,500	NaN	0,500	31
Moreno- Pérez et al.	2018		D	2126,7	NaN	NaN	NaN	104,33	NaN	NaN	1,250	NaN	1,250	6,47
Nunes et al.	2016	10.1002/ hyp.106 29	D	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1,400	NaN
Panahande h et al.	2022	10.1016/ j.jhydrol .2022.12 8092	D	697,82	NaN	NaN	0,42	190,12	NaN	0,48	1,639	NaN	1,639	NaN
Sadeghi et al.	2014	10.3906/ tar- 1312-53	D	232,5	NaN	NaN	NaN	60,84	NaN	0,795	0,760	NaN	0,760	NaN

Autores	Ano	DOI	Classificação	P_g (mm)	\bar{R} (mm h ⁻	Ē (mm	Ē/	Interceptação	LAI	с	S	S_t	S_{ν}	Altura
					1)	h-1)	R	(mm por área de solo)			(mm)	(mm)	(mm)	(m)
Sadeghi et al.	2018	10.1007/ s10342- 017- 1098-4	D	860,3	3,7	0,41	0,11	NaN	3,451 67	0,49	0,364	0,213	0,576	6
Sadeghi et al. (a)	2015		D	197,2	NaN	NaN	0,12	35,20	NaN	0,55	0,190	NaN	0,190	6
Sadeghi et al. (b)	2015	10.1016/ j.agrfor met.201 4.10.006	D	275,3	NaN	NaN	0,11	113,12	NaN	0,625	1,145	NaN	1,145	8,55
Sadeghi, Attarod, Van Stan & Pypker	2015	10.1016/ j.agrfor met.201 4.10.006	D	275,3	NaN	NaN	0,06	70,50	3,285	0,565	0,955	NaN	0,955	8,55
Schelleken s et al.	1999	10.1016/ S0022- 1694(99))00157- 2	D	852	1,85	0,94	0,51	444,00	6,4	0,77	1,150	0,000	1,150	20
Sraj et al.	2008	10.1016/ j.agrfor met.200 7.09.007	D	1318	NaN	NaN	NaN	374,10	6,6	0,685	0,800	NaN	0,800	12,32
Steidle Neto et al.	2012	10.5849/ forsci.09 -120	D	560	NaN	NaN	NaN	61,50	4,2	0,58	0,240	0,040	0,280	16,3
Sun et al.	2022	10.1002/ hyp.145 38	D	1771	1,19	0,25	0,21	NaN	NaN	0,346 67	1,077	0,097	1,174	NaN
Sun et al.	2013	10.3906/ tar- 1207-36	D	1171,79	0,96	NaN	NaN	271,47	8,67	NaN	1,220	NaN	1,220	18,17
Sun et al.	2014	10.1007/ s10310-	D	880,8	2,37	0,38	0,16	221,80	NaN	0,87	2,400	0,390	2,790	16

Autores	Ano	DOI	Classificação	P_g (mm)	\bar{R} (mm h ⁻	Ē (mm	Ē/	Interceptação	LAI	с	S	St	S_{ν}	Altura
					1)	h ⁻¹)	Ē	(mm por área			(mm)	(mm)	(mm)	(m)
								de solo)						
		013-												
		0421-2												
Sun et al.	2017	10.1016/	D	2407,43	NaN	NaN	NaN	NaN	NaN	0,85	NaN	NaN	NaN	17,29
		j.foreco.												
		2017.07.												
T. 1.1.1	1001	036	D	NL NI	NL NI	NL NL	NT. NT	NL NL	NT . NT	NL NI	NL NI	NT. NT	NT NT	NL NI
Teklenaim	1991	10.2307/	D	Inain	INAIN	Inain	Inain	INAIN	Inain	INAIN	inain	Inain	Inain	INAIN
anot &		2404571												
Wallace et	2013	10 1016/	D	NaN	NaN	NaN	NaN	NaN	2	0.46	0.120	0.110	0.230	25
al	2015	i ihvdrol	D	India	INAIN	Indin	INAIN	INAIN	2	0,40	0,120	0,110	0,230	23
ui.		2013.06												
		.036												
Wei et al.	2020	10.1016/	D	4337	5,1	0,11	0,02	713,00	1,545	0,6	2,477	0,113	2,590	4,15
		j.jhydrol			,	<i>,</i>	, í	,	,	,	ĺ.	,	,	<i>,</i>
		.2020.12												
		5232												
Whitehead	1991	10.1016/	D	1623	NaN	NaN	NaN	268,00	NaN	0,76	0,600	0,220	0,820	NaN
& Kelliher		0168-												
		1923(91												
)90025-												
	2010	L		240.5		0.004	0.00		1.0.	0 = 10	0 == 0	0.004	0.047	6.0.4
Carlyle-	2010	10.1002/	E	349,7	4,282	0,094	0,02	54,19	1,95	0,742	0,773	0,094	0,867	6,84
Moses,		eco.105												
Cameron														
Dunin et	1988	10.1002/	F	3325	NaN	NaN	NaN	410.00	3	NaN	0.350	NaN	0.350	8 75
al	1700	hvn 336	L	5525	ivaiv	14414	14414	410,00	5	14414	0,550	Inain	0,550	0,75
un		0020403												
Liu et al.	2018	10.1007/	Е	499	2,51	0,049	0,02	86,70	NaN	0,73	2,670	0,066	2,736	18,15
		s11676-			2 -	- ,	- ,	7		- 7	,	- ,	,	- 7 -
		017-												
		0407-6												
Manfroi et	2006	10.1016/	Е	7399,00	3,4	NaN	NaN	884,00	6,2	0,936	NaN	NaN	NaN	55
al.		j.jhydrol												

Autores	Ano	DOI	Classificação	P_{g} (mm)	\bar{R} (mm h ⁻	$ar{E}$ (mm	\bar{E} /	Interceptação	LAI	с	S	St	S_{v}	Altura
					1)	h ⁻¹)	Ŕ	(mm por área			(mm)	(mm)	(mm)	(m)
								de solo)						1
		.2006.02												
		.020												
Shuttlewor	1988	10.1098/	E	5492	NaN	NaN	NaN	683,00	NaN	0,92	0,740	NaN	0,740	35
th		rspb.198												
		8.0024												l
Waterloo	1999	10.1029/	Е	3233,33	NaN	NaN	0,14	485,00	3,5	0,42	1,000	0,062	1,062	11,6
et al.		1999W												
		R90000												
		6												l
Ziegler et	2009	10.1016/	Е	1134	NaN	NaN	NaN	NaN	2,15	NaN	NaN	NaN	NaN	21
al.		j.agrfor												
		met.200												
		8.09.002												